geom_bar in ggplot2
How to make a bar chart in ggplot2 using geom_bar. Examples of grouped, stacked, overlaid, filled, and colored bar charts.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Bar Chart
library(plotly)
dat <- data.frame(
time = factor(c("Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(14.89, 17.23)
)
p <- ggplot(data=dat, aes(x=time, y=total_bill)) +
geom_bar(stat="identity")
fig <- ggplotly(p)
fig
Colored Bar Chart
filled bar chart with geom_bar
library(plotly)
dat <- data.frame(
time = factor(c("Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(14.89, 17.23)
)
p <- ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) +
geom_bar(stat="identity")
fig <- ggplotly(p)
fig
No Legend
geom_bar
with no legend
library(plotly)
dat <- data.frame(
time = factor(c("Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(14.89, 17.23)
)
# No legend, since the information is redundant
p <- ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) +
geom_bar(colour="black", stat="identity") +
guides(fill=FALSE)
fig <- ggplotly(p)
fig
Position Dodge
geombar
with position
dodge
library(plotly)
dat1 <- data.frame(
sex = factor(c("Female","Female","Male","Male")),
time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(13.53, 16.81, 16.24, 17.42)
)
# Bar graph, time on x-axis, color fill grouped by sex -- use position_dodge()
p <- ggplot(data=dat1, aes(x=time, y=total_bill, fill=sex)) +
geom_bar(stat="identity", position=position_dodge())
fig <- ggplotly(p)
fig
Custom Colors
geom_bar
with manual colors
library(plotly)
dat1 <- data.frame(
sex = factor(c("Female","Female","Male","Male")),
time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(13.53, 16.81, 16.24, 17.42)
)
p <- ggplot(data=dat1, aes(x=time, y=total_bill, fill=sex)) +
geom_bar(stat="identity", position=position_dodge(), colour="black") +
scale_fill_manual(values=c("#999999", "#E69F00"))
fig <- ggplotly(p)
fig
Styles & Themes
geom_bar
with styles and theme
library(plotly)
dat1 <- data.frame(
sex = factor(c("Female","Female","Male","Male")),
time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(13.53, 16.81, 16.24, 17.42)
)
# A bar graph
p <- ggplot(data=dat1, aes(x=time, y=total_bill, fill=sex)) +
geom_bar(colour="black", stat="identity",
position=position_dodge(),
size=.3) + # Thinner lines
xlab("Time of day") + ylab("Total bill") + # Set axis labels
ggtitle("Average bill for 2 people") + # Set title
theme_bw()
fig <- ggplotly(p)
fig
Variable Comparison
using geom_bar
for variable comparison
library(plotly)
DF <- read.table(text="Rank F1 F2 F3
1 500 250 50
2 400 100 30
3 300 155 100
4 200 90 10", header=TRUE)
library(reshape2)
DF1 <- melt(DF, id.var="Rank")
p <- ggplot(DF1, aes(x = Rank, y = value, fill = variable)) +
geom_bar(stat = "identity")
fig <- ggplotly(p)
fig
Error Bars
barplot with error bars
library(plotly)
library(dplyr)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
df.summ <- df %>% group_by(cut) %>% summarize(Mean = mean(table), Min = min(table), Max = max(table))
p <- ggplot(df.summ, aes(x = cut, y = Mean, ymin = Min, ymax = Max, fill = cut)) +
geom_bar(stat = "identity") +
geom_errorbar() +
ggtitle("Bar chart with Error Bars")
fig <- ggplotly(p)
fig
Stacked Bar Chart
geom_bar
with stacked traces
library(plotly)
library(dplyr)
df <- structure(c(106487, 495681, 1597442, 2452577, 2065141, 2271925, 4735484, 3555352, 8056040, 4321887, 2463194, 347566, 621147, 1325727, 1123492, 800368, 761550, 1359737, 1073726, 36, 53, 141, 41538, 64759, 124160, 69942, 74862, 323543, 247236, 112059, 16595, 37028, 153249, 427642, 1588178, 2738157, 2795672, 2265696, 11951, 33424, 62469, 74720, 166607, 404044, 426967, 38972, 361888, 1143671, 1516716, 160037, 354804, 996944, 1716374, 1982735, 3615225, 4486806, 3037122, 17, 54, 55, 210, 312, 358, 857, 350, 7368, 8443, 6286, 1750, 7367, 14092, 28954, 80779, 176893, 354939, 446792, 33333, 69911, 53144, 29169, 18005, 11704, 13363, 18028, 46547, 14574, 8954, 2483, 14693, 25467, 25215, 41254, 46237, 98263, 185986), .Dim = c(19, 5), .Dimnames = list(c("1820-30", "1831-40", "1841-50", "1851-60", "1861-70", "1871-80", "1881-90", "1891-00", "1901-10", "1911-20", "1921-30", "1931-40", "1941-50", "1951-60", "1961-70", "1971-80", "1981-90", "1991-00", "2001-06"), c("Europe", "Asia", "Americas", "Africa", "Oceania")))
df.m <- melt(df)
df.m <- rename(df.m, Period = Var1, Region = Var2)
p <- ggplot(df.m, aes(x = Period, y = value/1e+06,fill = Region)) + ggtitle("Migration to the United States by Source Region (1820-2006), In Millions")
p <- p + geom_bar(stat = "identity", position = "stack")
fig <- ggplotly(p)
fig
Ordered Bar Chart
ordering variable in geom_bar
library(plotly)
library(plyr)
dane<-data.frame(x=1:10,y=seq(-5,4),g=rep(c('A','B'),each=5))
dane$x<-as.factor(dane$x)
p <- ggplot(data=dane,aes(x=x,y=y,fill=g)) +
geom_bar(stat="identity")
fig <- ggplotly(p)
fig
Precentages
using geom_bar
to show percentages
library(plotly)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
p <- ggplot(df, aes(x = color)) +
geom_bar(aes(y = ..count../sum(..count..), fill = cut)) +
scale_fill_brewer(palette = "Set3") +
ylab("Percent") +
ggtitle("Show precentages in bar chart")
fig <- ggplotly(p)
fig
Manuel Colors
using geom_bar
to manually specify colors
library(plotly)
library(RColorBrewer)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
# Simply use fill = a vector of colors
p <- ggplot(df, aes(x = color)) +
geom_bar(fill = brewer.pal(length(unique(df$color)), "Set3")) +
ylab("Count") +
ggtitle("Specify manual colors in a bar chart")
fig <- ggplotly(p)
fig
Reordered Bar Chart
Re-ordering bars shown using geom_bar
library(plotly)
df <- data.frame(x = as.factor(LETTERS[1:5]),
y = sample(10:20, size = 5))
# First change factor levels
df$x <- factor(df$x, levels = c("C", "B", "A", "D", "E"))
# Plot
p <- ggplot(df, aes(x, y, fill = x)) +
geom_bar(stat = "identity") +
ggtitle("Bar Chart with changed factor levels")
fig <- ggplotly(p)
fig
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)
