Show Sidebar Hide Sidebar

geom_density in ggplot2

Add a smooth density estimate calculated by stat_density with ggplot2 and R. Examples, tutorials, and code.

New to Plotly?

Plotly's R library is free and open source!
Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode.
We also have a quick-reference cheatsheet (new!) to help you get started!

Version Check

Version 4 of Plotly's R package is now available!
Check out this post for more information on breaking changes and new features available in this version.

library(plotly)
packageVersion('plotly')
## [1] '4.9.1'

Basic Density Plot

library(plotly)

library(ggplot2)
set.seed(1234)

dfGamma = data.frame(nu75 = rgamma(100, 0.75),
           nu1 = rgamma(100, 1),
           nu2 = rgamma(100, 2))

dfGamma = stack(dfGamma)

p <- ggplot(dfGamma, aes(x = values)) +
  stat_density(aes(group = ind, color = ind),position="identity",geom="line")

p <- ggplotly(p)

p

Density & Facet

library(plotly)

require(plyr)
dd<-data.frame(matrix(rnorm(144, mean=2, sd=2),72,2),c(rep("A",24),rep("B",24),rep("C",24)))
colnames(dd) <- c("x_value", "Predicted_value",  "State_CD")

dd <- data.frame(
  predicted = rnorm(72, mean = 2, sd = 2),
  state = rep(c("A", "B", "C"), each = 24)
)

grid <- with(dd, seq(min(predicted), max(predicted), length = 100))
normaldens <- ddply(dd, "state", function(df) {
  data.frame(
    predicted = grid,
    density = dnorm(grid, mean(df$predicted), sd(df$predicted))
  )
})

p <- ggplot(dd, aes(predicted))  +
  geom_density() +
  geom_line(aes(y = density), data = normaldens, colour = "red") +
  facet_wrap(~ state)

p <- ggplotly(p)

p

Multiple Density Plot

library(plotly)

carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))

#Now, combine your two dataframes into one.  First make a new column in each.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'

#and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)

#now make your lovely plot
p <- ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)

p <- ggplotly(p)

p

Stacked Density Plot

library(plotly)
set.seed(123)

df <- data.frame(x <- rchisq(1000, 5, 10),
                 group <- sample(LETTERS[1:5], size = 1000, replace = T))

p <- ggplot(df, aes(x, fill = group)) + 
  geom_density(alpha = 0.5, position = "stack") + 
  ggtitle("stacked density chart")

p <- ggplotly(p)

p