Show Sidebar Hide Sidebar

geom_line in ggplot2

How to make line plots in ggplot2 with geom_line. Examples with code and interactive charts

New to Plotly?

Plotly's R library is free and open source!
Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode.
We also have a quick-reference cheatsheet (new!) to help you get started!

Version Check

Version 4 of Plotly's R package is now available!
Check out this post for more information on breaking changes and new features available in this version.

library(plotly)
packageVersion('plotly')
## [1] '4.9.1'

Basic Line Plot

library(plotly)

dat1 <- data.frame(
    sex = factor(c("Female","Female","Male","Male")),
    time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
    total_bill = c(13.53, 16.81, 16.24, 17.42)
)

p <- ggplot(data=dat1, aes(x=time, y=total_bill, group=sex)) +
    geom_line() +
    geom_point()

p <- ggplotly(p)

p

Add Points

library(plotly)

dat1 <- data.frame(
    sex = factor(c("Female","Female","Male","Male")),
    time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
    total_bill = c(13.53, 16.81, 16.24, 17.42)
)

# Map sex to different point shape, and use larger points
p <- ggplot(data=dat1, aes(x=time, y=total_bill, group=sex, shape=sex)) +
    geom_line() +
    geom_point()

p <- ggplotly(p)

p

Styles & Themes

library(plotly)

dat1 <- data.frame(
    sex = factor(c("Female","Female","Male","Male")),
    time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
    total_bill = c(13.53, 16.81, 16.24, 17.42)
)

p <- ggplot(data=dat1, aes(x=time, y=total_bill, group=sex, shape=sex, colour=sex)) +
    geom_line(aes(linetype=sex), size=1) +     # Set linetype by sex
    geom_point(size=5) +         # Use larger points, fill with white
    scale_colour_hue(name="Sex",      # Set legend title
                     l=30)  +                  # Use darker colors (lightness=30)
    scale_shape_manual(name="Sex",
                       values=c(22,21)) +      # Use points with a fill color
    scale_linetype_discrete(name="Sex") +
    xlab("Time of day") + ylab("Total bill") + # Set axis labels
    ggtitle("Average bill for 2 people") +     # Set title
    theme_bw()

p <- ggplotly(p)

p

Continuous

library(plotly)

datn <- read.table(header=TRUE, text='
supp dose length
  OJ  0.5  13.23
  OJ  1.0  22.70
  OJ  2.0  26.06
  VC  0.5   7.98
  VC  1.0  16.77
  VC  2.0  26.14
')

p <- ggplot(data=datn, aes(x=dose, y=length, group=supp, colour=supp)) +
    geom_line() +
    geom_point()

p <- ggplotly(p)

p

Categorical

library(plotly)

datn <- read.table(header=TRUE, text='
supp dose length
  OJ  0.5  13.23
  OJ  1.0  22.70
  OJ  2.0  26.06
  VC  0.5   7.98
  VC  1.0  16.77
  VC  2.0  26.14
')

datn2 <- datn
datn2$dose <- factor(datn2$dose)
p <- ggplot(data=datn2, aes(x=dose, y=length, group=supp, colour=supp)) +
    geom_line() +
    geom_point()

p <- ggplotly(p)

p

Multiple Variables

library(reshape2)
library(plotly)

test_data <-
  data.frame(
    var0 = 100 + c(0, cumsum(runif(49, -20, 20))),
    var1 = 150 + c(0, cumsum(runif(49, -10, 10))),
    date = seq(as.Date("2002-01-01"), by="1 month", length.out=100)
  )

test_data_long <- melt(test_data, id="date")  # convert to long format

p <- ggplot(data=test_data_long,
       aes(x=date, y=value, colour=variable)) +
    geom_line()

p <- ggplotly(p)

p

Mulitple Points

library(plotly)
library(data.table)

d=data.table(x=seq(0, 100, by=0.1), y=seq(0,1000))
p <- ggplot(d, aes(x=x, y=y))+geom_line()
#Change the length parameter for fewer or more points
thinned <- floor(seq(from=1,to=dim(d)[1],length=70))
p <- ggplot(d, aes(x=x, y=y))+geom_line()+geom_point(data=d[thinned,],aes(x=x,y=y))

p <- ggplotly(p)

p

Styled Lines

library(plotly)

x <- c(10, 20, 50, 10, 20, 50)
mean = c(52.4, 98.2, 97.9, 74.1, 98.1, 97.6)
group = c(1, 1, 1, 2,2,2)
upper = c(13.64, 89, 86.4, 13.64, 89, 86.4)
lower = c(95.4, 99.8, 99.7, 95.4, 99.8, 99.7)
data <- data.frame(x=x,y=mean, group, upper, lower)

p <- ggplot(data, aes(x = x, y= mean, group = as.factor(data$group),
                          colour=as.factor(data$group))) +
  geom_line() + geom_point() +
  geom_line(aes(y=lower),linetype="dotted") +
  geom_line(aes(y=upper),linetype="dotted")+
  scale_color_manual(name="Groups",values=c("red", "blue"))+
  guides(colour = guide_legend(override.aes = list(linetype = 1)))

p <- ggplotly(p)

p

Mapping to Groups

library(plotly)

# Data frame with two continuous variables and two factors
set.seed(0)
x <- rep(1:10, 4)
y <- c(rep(1:10, 2)+rnorm(20)/5, rep(6:15, 2) + rnorm(20)/5)
treatment <- gl(2, 20, 40, labels=letters[1:2])
replicate <- gl(2, 10, 40)
d <- data.frame(x=x, y=y, treatment=treatment, replicate=replicate)

p <- ggplot(d, aes(x=x, y=y, colour=treatment, group=interaction(treatment, replicate))) +
    geom_point() + geom_line()

p <- ggplotly(p)

p

Add Segment

library(plotly)

x <- rep(1:10, 2)
y <- c(1:10, 1:10+5)
fac <- gl(2, 10)
df <- data.frame(x=x, y=y, fac=fac)

p <- ggplot(df, aes(x=x, y=y, linetype=fac)) +
    geom_line() +
    geom_segment(aes(x=2, y=7, xend=7, yend=7), colour="red") +
    scale_linetype_discrete(guide=guide_legend(override.aes=aes(colour="blue")))

p <- ggplotly(p)

p

Add Error Bar

library(plotly)

# sample data
df <- data.frame(condition = rep(LETTERS[1:4], each = 5),
                 E = rep(1:5, times = 4),
                 avg = rnorm(20),
                 se = .3)
# plotting command
p <- ggplot(data = df, aes(x = E,
                      y = avg,
                      color = condition,
                      linetype = condition,
                      shape = condition,
                      fill = condition)) +
  geom_line(size=1) +
  geom_point(size=3) +
  scale_color_manual(values = c(A = "red", B = "red", C = "blue", D = "blue"),
                     guide = "none") +
  scale_linetype_manual(values = c(A = "solid", B = "dashed", C = "solid", D = "dashed"),
                        guide = "none") +
  scale_shape_manual(values = c(A = 24, B = 24, C = 21, D = 21),
                     guide = "none") +
  scale_fill_manual(values = c(A = "white", B = "red", C = "white", D = "blue"),
                    guide = "none") +
  geom_errorbar(aes(x = E, ymin = avg-se, ymax = avg+se, color = NULL, linetype = NULL),
                width=.1, position=position_dodge(width = .1))

p <- ggplotly(p)

p