Show Sidebar Hide Sidebar

# Box Plots in matplotlib

How to make a box plot in matplotlib. Examples of box plots in matplotlib that are grouped, colored, and display the underlying data distribution.

See our Version 4 Migration Guide for information about how to upgrade.

#### New to Plotly?¶

You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

#### Version Check¶

Plotly's python package is updated frequently. Run pip install plotly --upgrade to use the latest version.

In [1]:
import plotly
plotly.__version__

Out[1]:
'3.1.1'

#### Basic Box Plot¶

In [2]:
import plotly.plotly as py
import plotly.tools as tls

import matplotlib.pyplot as plt
import numpy as np

center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low), 0)

mpl_fig = plt.figure()

ax.boxplot(data)

ax.set_xlabel('Data Points')
ax.set_ylabel('Variance')

plotly_fig = tls.mpl_to_plotly( mpl_fig )
py.iplot(plotly_fig, filename='boxplot-basic')

Out[2]:

#### Multiple Box Plots¶

In [3]:
import plotly.plotly as py
import plotly.tools as tls

import matplotlib.pyplot as plt
import numpy as np

# Generating sample data
N = 1000
data_set1 = np.random.normal(1, 1, N)
data_set2 = np.random.lognormal(1, 1, N)
data_set3 = np.random.exponential(1, N)
data_set4 = np.random.gumbel(6, 4, N)
data_set5 = np.random.triangular(2, 9, 11, N)

data = [data_set1, data_set2, data_set3, data_set4, data_set5]

mpl_fig = plt.figure()

ax.boxplot(data)

plotly_fig = tls.mpl_to_plotly( mpl_fig )
py.iplot(plotly_fig, filename='mpl-multiple-boxplot')

Out[3]:

#### Box Plot with Outliers¶

In [4]:
import plotly.plotly as py
import plotly.tools as tls

import matplotlib.pyplot as plt
import numpy as np

center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low), 0)

# change outlier point symbols
mpl_fig = plt.figure()
plt.boxplot(data, 0, 'gD')

plotly_fig = tls.mpl_to_plotly(mpl_fig)
py.iplot(plotly_fig, filename='mpl-boxplot-outliers')

Out[4]: