3D Bubble Charts in Python

How to make 3D Bubble Charts in Python with Plotly. Three examples of 3D Bubble Charts.


Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.

3d Bubble chart with Plotly Express

In [1]:
import plotly.express as px
import numpy as np
df = px.data.gapminder()
fig = px.scatter_3d(df, x='year', y='continent', z='pop', size='gdpPercap', color='lifeExp',
                    hover_data=['country'])
fig.update_layout(scene_zaxis_type="log")
fig.show()
304050607080lifeExp

Simple Bubble Chart

In [2]:
import plotly.graph_objects as go

import pandas as pd

# Get Data: this ex will only use part of it (i.e. rows 750-1500)
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv')

start, end = 750, 1500

fig = go.Figure(data=go.Scatter3d(
    x=df['year'][start:end],
    y=df['continent'][start:end],
    z=df['pop'][start:end],
    text=df['country'][start:end],
    mode='markers',
    marker=dict(
        sizemode='diameter',
        sizeref=750,
        size=df['gdpPercap'][start:end],
        color = df['lifeExp'][start:end],
        colorscale = 'Viridis',
        colorbar_title = 'Life<br>Expectancy',
        line_color='rgb(140, 140, 170)'
    )
))


fig.update_layout(height=800, width=800,
                  title=dict(text='Examining Population and Life Expectancy Over Time'))

fig.show()
304050607080LifeExpectancyExamining Population and Life Expectancy Over Time

Bubble Chart Sized by a Variable

Plot planets' distance from sun, density, and gravity with bubble size based on planet size

In [3]:
import plotly.graph_objects as go

planets = ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune', 'Pluto']
planet_colors = ['rgb(135, 135, 125)', 'rgb(210, 50, 0)', 'rgb(50, 90, 255)',
                 'rgb(178, 0, 0)', 'rgb(235, 235, 210)', 'rgb(235, 205, 130)',
                 'rgb(55, 255, 217)', 'rgb(38, 0, 171)', 'rgb(255, 255, 255)']
distance_from_sun = [57.9, 108.2, 149.6, 227.9, 778.6, 1433.5, 2872.5, 4495.1, 5906.4]
density = [5427, 5243, 5514, 3933, 1326, 687, 1271, 1638, 2095]
gravity = [3.7, 8.9, 9.8, 3.7, 23.1, 9.0, 8.7, 11.0, 0.7]
planet_diameter = [4879, 12104, 12756, 6792, 142984, 120536, 51118, 49528, 2370]

# Create trace, sizing bubbles by planet diameter
fig = go.Figure(data=go.Scatter3d(
    x = distance_from_sun,
    y = density,
    z = gravity,
    text = planets,
    mode = 'markers',
    marker = dict(
        sizemode = 'diameter',
        sizeref = 750, # info on sizeref: https://plotly.com/python/reference/scatter/#scatter-marker-sizeref
        size = planet_diameter,
        color = planet_colors,
        )
))

fig.update_layout(
    width=800,
    height=800,
    title=dict(text="Planets!"),
    scene=dict(
        xaxis=dict(
            title=dict(
                text="Distance from Sun",
                font=dict(
                    color="white"
                )
            )
        ),
        yaxis=dict(
            title=dict(
                text="Density",
                font=dict(
                    color="white"
                )
            )
        ),
        zaxis=dict(
            title=dict(
                text="Gravity",
                font=dict(
                    color="white"
                )
            )
        ),
        bgcolor="rgb(20, 24, 54)"
    )
)

fig.show()

Edit the Colorbar

Plot planets' distance from sun, density, and gravity with bubble size based on planet size

In [4]:
import plotly.graph_objects as go

planets = ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune', 'Pluto']
temperatures = [167, 464, 15, -20, -65, -110, -140, -195, -200, -225]
distance_from_sun = [57.9, 108.2, 149.6, 227.9, 778.6, 1433.5, 2872.5, 4495.1, 5906.4]
density = [5427, 5243, 5514, 3933, 1326, 687, 1271, 1638, 2095]
gravity = [3.7, 8.9, 9.8, 3.7, 23.1, 9.0, 8.7, 11.0, 0.7]
planet_diameter = [4879, 12104, 12756, 6792, 142984, 120536, 51118, 49528, 2370]

# Create trace, sizing bubbles by planet diameter
fig = go.Figure(go.Scatter3d(
    x = distance_from_sun,
    y = density,
    z = gravity,
    text = planets,
    mode = 'markers',
    marker = dict(
        sizemode = 'diameter',
        sizeref = 750, # info on sizeref: https://plotly.com/python/reference/scatter/#scatter-marker-sizeref
        size = planet_diameter,
        color = temperatures,
        colorbar_title = 'Mean<br>Temperature',
        colorscale=[[0, 'rgb(5, 10, 172)'], [.3, 'rgb(255, 255, 255)'], [1, 'rgb(178, 10, 28)']]
        )
))

fig.update_layout(
    width=800,
    height=800,
    title=dict(text="Planets!"),
    scene=dict(
        xaxis=dict(
            title=dict(
                text="Distance from Sun",
                font=dict(
                    color="white"
                )
            )
        ),
        yaxis=dict(
            title=dict(
                text="Density",
                font=dict(
                    color="white"
                )
            )
        ),
        zaxis=dict(
            title=dict(
                text="Gravity",
                font=dict(
                    color="white"
                )
            )
        ),
        bgcolor="rgb(20, 24, 54)"
    )
)

fig.show()
−200−1000100200300400MeanTemperaturePlanets!

What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

from dash import Dash, dcc, html

app = Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter