Show Sidebar Hide Sidebar Convolution in Python

Learn how to perform convolution between two signals in Python.

New to Plotly?Â¶

You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

ImportsÂ¶

The tutorial below imports NumPy, Pandas, SciPy and Plotly.

In :
import plotly.plotly as py
import plotly.graph_objs as go
import plotly.figure_factory as ff

import numpy as np
import pandas as pd
import scipy

from scipy import signal


Import DataÂ¶

Let us import some stock data to apply convolution on.

In :
stock_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv')
df = stock_data[0:15]

table = ff.create_table(df)
py.iplot(table, filename='stockdata-peak-fitting')

Out:

Convolve Two SignalsÂ¶

Convolution is a type of transform that takes two functions f and g and produces another function via an integration. In particular, the convolution $(f*g)(t)$ is defined as:

\begin{align*} \int_{-\infty}^{\infty} {f(\tau)g(t - \tau)d\tau} \end{align*}

We can use convolution in the discrete case between two n-dimensional arrays.

In :
sample = range(15)
saw = signal.sawtooth(t=sample)

data_sample = list(stock_data['SBUX'][0:100])
data_sample2 = list(stock_data['AAPL'][0:100])
x = list(range(len(data_sample)))
y_convolve = signal.convolve(saw, data_sample2)
x_convolve = list(range(len(y_convolve)))

trace1 = go.Scatter(
x = x,
y = data_sample,
mode = 'lines',
name = 'SBUX'
)

trace2 = go.Scatter(
x = x,
y = data_sample2,
mode = 'lines',
name = 'AAPL'
)

trace3 = go.Scatter(
x = x_convolve,
y = y_convolve,
mode = 'lines',
name = 'Convolution'
)

data = [trace1, trace2, trace3]
py.iplot(data, filename='convolution-of-two-signals')

Out: 