Icicle Charts in Python
How to make Icicle Charts.
New to Plotly?
Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
New in v5.0
Icicle charts visualize hierarchical data using rectangular sectors that cascade from root to leaves in one of four directions: up, down, left, or right. Similar to Sunburst charts and Treemaps charts, the hierarchy is defined by labels
(names
for px.icicle
) and parents
attributes. Click on one sector to zoom in/out, which also displays a pathbar on the top of your icicle. To zoom out, you can click the parent sector or click the pathbar as well.
Basic Icicle Plot with plotly.express¶
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
With px.icicle
, each item in the character
list is represented as a rectangular sector of the icicle.
import plotly.express as px
data = dict(
character=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parent=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
value=[10, 14, 12, 10, 2, 6, 6, 4, 4])
fig =px.icicle(
data,
names='character',
parents='parent',
values='value',
)
fig.update_traces(root_color="lightgrey")
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Icicle of a rectangular DataFrame with plotly.express¶
Hierarchical data are often stored as a rectangular dataframe, with different columns corresponding to different levels of the hierarchy. px.icicle
can take a path parameter corresponding to a list of columns. Note that id
and parent
should not be provided if path is given.
import plotly.express as px
df = px.data.tips()
fig = px.icicle(df, path=[px.Constant("all"), 'day', 'time', 'sex'], values='total_bill')
fig.update_traces(root_color="lightgrey")
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Icicle of a rectangular DataFrame with continuous color argument in px.icicle¶
If a color argument is passed, the color of a node is computed as the average of the color values of its children, weighted by their values.
import plotly.express as px
import numpy as np
df = px.data.gapminder().query("year == 2007")
fig = px.icicle(df, path=[px.Constant("world"), 'continent', 'country'], values='pop',
color='lifeExp', hover_data=['iso_alpha'],
color_continuous_scale='RdBu',
color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Icicle of a rectangular DataFrame with discrete color argument in px.icicle¶
When the argument of color corresponds to non-numerical data, discrete colors are used. If a sector has the same value of the color column for all its children, then the corresponding color is used, otherwise the first color of the discrete color sequence is used.
import plotly.express as px
df = px.data.tips()
fig = px.icicle(df, path=[px.Constant("all"), 'sex', 'day', 'time'],
values='total_bill', color='day')
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
In the example below the color of Saturday and Sunday sectors is the same as Dinner because there are only Dinner entries for Saturday and Sunday. However, for Female -> Friday there are both lunches and dinners, hence the "mixed" color (blue here) is used.
import plotly.express as px
df = px.data.tips()
fig = px.icicle(df, path=[px.Constant("all"), 'sex', 'day', 'time'],
values='total_bill', color='time')
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Using an explicit mapping for discrete colors¶
For more information about discrete colors, see the dedicated page.
import plotly.express as px
df = px.data.tips()
fig = px.icicle(df, path=[px.Constant("all"), 'sex', 'day', 'time'],
values='total_bill', color='time',
color_discrete_map={'(?)':'lightgrey', 'Lunch':'gold', 'Dinner':'darkblue'})
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Rectangular data with missing values¶
If the dataset is not fully rectangular, missing values should be supplied as None. Note that the parents of None entries must be a leaf, i.e. it cannot have other children than None (otherwise a ValueError is raised).
import plotly.express as px
import pandas as pd
vendors = ["A", "B", "C", "D", None, "E", "F", "G", "H", None]
sectors = ["Tech", "Tech", "Finance", "Finance", "Other",
"Tech", "Tech", "Finance", "Finance", "Other"]
regions = ["North", "North", "North", "North", "North",
"South", "South", "South", "South", "South"]
sales = [1, 3, 2, 4, 1, 2, 2, 1, 4, 1]
df = pd.DataFrame(
dict(vendors=vendors, sectors=sectors, regions=regions, sales=sales)
)
df["all"] = "all" # in order to have a single root node
print(df)
fig = px.icicle(df, path=['all', 'regions', 'sectors', 'vendors'], values='sales')
fig.update_traces(root_color='lightgrey')
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Basic Icicle Plot with go.Icicle¶
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Icicle
class from plotly.graph_objects
.
Main arguments:
labels
(names
inpx.icicle
sincelabels
is reserved for overriding columns names): sets the labels of icicle sectors.parents
: sets the parent sectors of icicle sectors. An empty string''
is used for the root node in the hierarchy. In this example, the root is "Eve".values
: sets the values associated with icicle sectors, determining their width (See thebranchvalues
section below for different modes for setting the width).
import plotly.graph_objects as go
fig =go.Figure(go.Icicle(
labels=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
root_color="lightgrey"
))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Icicle with Repeated Labels¶
import plotly.graph_objects as go
fig =go.Figure(go.Icicle(
ids=["Sports",
"North America", "Europe", "Australia", "North America - Football", "Soccer",
"North America - Rugby", "Europe - Football", "Rugby",
"Europe - American Football","Australia - Football", "Association",
"Australian Rules", "Autstralia - American Football", "Australia - Rugby",
"Rugby League", "Rugby Union"
],
labels= ["Sports",
"North<br>America", "Europe", "Australia", "Football", "Soccer", "Rugby",
"Football", "Rugby", "American<br>Football", "Football", "Association",
"Australian<br>Rules", "American<br>Football", "Rugby", "Rugby<br>League",
"Rugby<br>Union"
],
parents=["",
"Sports", "Sports", "Sports", "North America", "North America", "North America", "Europe",
"Europe", "Europe","Australia", "Australia - Football", "Australia - Football",
"Australia - Football", "Australia - Football", "Australia - Rugby",
"Australia - Rugby"
],
root_color="lightgrey"
))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Branchvalues¶
With branchvalues "total", the value of the parent represents the height/width of its slice. In the example below, "Enoch" is 4 and "Awan" is 6 and so Enoch's height is 4/6ths of Awans. With branchvalues "remainder", the parent's width is determined by its own value plus those of its children. So, Enoch's height is 4/10ths of Awan's (4 / (6 + 4)).
Note that this means that the sum of the values of the children cannot exceed the value of their parent when branchvalues is set to "total". When branchvalues is set to "remainder" (the default), children will not take up all of the space below their parent (unless the parent is the root and it has a value of 0).
import plotly.graph_objects as go
fig =go.Figure(go.Icicle(
labels=[ "Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
values=[ 65, 14, 12, 10, 2, 6, 6, 4, 4],
branchvalues="total",
root_color="lightgrey"
))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Large Number of Slices¶
This example uses a plotly grid attribute for the subplots. Reference the row and column destination using the domain attribute.
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure()
fig.add_trace(go.Icicle(
ids=df.ids,
labels=df.labels,
parents=df.parents,
root_color="lightgrey"
))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Controlling text fontsize with uniformtext¶
If you want all the text labels to have the same size, you can use the uniformtext
layout parameter. The minsize
attribute sets the font size, and the mode
attribute sets what happens for labels which cannot fit with the desired fontsize: either hide
them or show
them with overflow.
Note: animated transitions are currently not implemented when uniformtext
is used.
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(go.Icicle(
ids = df.ids,
labels = df.labels,
parents = df.parents,
root_color="lightgrey"
))
fig.update_layout(
uniformtext=dict(minsize=10, mode='hide'),
margin = dict(t=50, l=25, r=25, b=25)
)
fig.show()
Icicle chart with a continuous colorscale¶
The example below visualizes a breakdown of sales (corresponding to sector width) and call success rate (corresponding to sector color) by region, county and salesperson level. For example, when exploring the data you can see that although the East region is behaving poorly, the Tyler county is still above average -- however, its performance is reduced by the poor success rate of salesperson GT.
In the right subplot which has a maxdepth
of two levels, click on a slice to see its breakdown to lower levels.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/sales_success.csv')
print(df.head())
levels = ['salesperson', 'county', 'region'] # levels used for the hierarchical chart
color_columns = ['sales', 'calls']
value_column = 'calls'
def build_hierarchical_dataframe(df, levels, value_column, color_columns=None):
"""
Build a hierarchy of levels for Icicle charts.
Levels are given starting from the bottom to the top of the hierarchy,
ie the last level corresponds to the root.
"""
df_list = []
for i, level in enumerate(levels):
df_tree = pd.DataFrame(columns=['id', 'parent', 'value', 'color'])
dfg = df.groupby(levels[i:]).sum()
dfg = dfg.reset_index()
df_tree['id'] = dfg[level].copy()
if i < len(levels) - 1:
df_tree['parent'] = dfg[levels[i+1]].copy()
else:
df_tree['parent'] = 'total'
df_tree['value'] = dfg[value_column]
df_tree['color'] = dfg[color_columns[0]] / dfg[color_columns[1]]
df_list.append(df_tree)
total = pd.Series(dict(id='total', parent='',
value=df[value_column].sum(),
color=df[color_columns[0]].sum() / df[color_columns[1]].sum()), name=0)
df_list.append(total)
df_all_trees = pd.concat(df_list, ignore_index=True)
return df_all_trees
df_all_trees = build_hierarchical_dataframe(df, levels, value_column, color_columns)
average_score = df['sales'].sum() / df['calls'].sum()
fig = make_subplots(1, 2, specs=[[{"type": "domain"}, {"type": "domain"}]],)
fig.add_trace(go.Icicle(
labels=df_all_trees['id'],
parents=df_all_trees['parent'],
values=df_all_trees['value'],
branchvalues='total',
marker=dict(
colors=df_all_trees['color'],
colorscale='RdBu',
cmid=average_score),
hovertemplate='<b>%{label} </b> <br> Sales: %{value}<br> Success rate: %{color:.2f}',
name=''
), 1, 1)
fig.add_trace(go.Icicle(
labels=df_all_trees['id'],
parents=df_all_trees['parent'],
values=df_all_trees['value'],
branchvalues='total',
marker=dict(
colors=df_all_trees['color'],
colorscale='RdBu',
cmid=average_score),
hovertemplate='<b>%{label} </b> <br> Sales: %{value}<br> Success rate: %{color:.2f}',
maxdepth=2
), 1, 2)
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Set Color of Icicle Sectors¶
import plotly.graph_objects as go
labels = ["container", "A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "container", "A1", "A2", "A3", "A4", "container", "B1"]
fig = go.Figure(go.Icicle(
labels = labels,
parents = parents,
marker_colors = ["pink", "royalblue", "lightgray", "purple",
"cyan", "lightgray", "lightblue", "lightgreen"]))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
This example uses iciclecolorway attribute, which should be set in layout.
import plotly.graph_objects as go
values = [0, 11, 12, 13, 14, 15, 20, 30]
labels = ["container", "A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "container", "A1", "A2", "A3", "A4", "container", "B1"]
fig = go.Figure(go.Icicle(
labels = labels,
parents = parents,
values=values,
root_color="lightblue"
))
fig.update_layout(
iciclecolorway = ["pink", "lightgray"],
margin = dict(t=50, l=25, r=25, b=25)
)
fig.show()
import plotly.graph_objects as go
values = [0, 11, 12, 13, 14, 15, 20, 30]
labels = ["container", "A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "container", "A1", "A2", "A3", "A4", "container", "B1"]
fig = go.Figure(go.Icicle(
labels = labels,
values = values,
parents = parents,
marker_colorscale = 'Blues'))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
import plotly.graph_objects as go
fig = go.Figure(
go.Icicle(
labels=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
root_color="lightgrey",
textfont_size=20,
marker=dict(pattern=dict(shape="|", size=5, solidity=0.9)),
)
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.show()
Set the Direction of Icicle charts¶
As mentioned above, Icicle charts can grow in one of four directions. Icicle charts have a tiling
attribute and this has two attributes: orientation
and flip
. orientation
takes either h
(horiztonal) or v
(vertical) and flip
takes either x
or y
. You can use these two attributes in combination to create each of the four cardinal directions: left, right, top, bottom.
Up Direction (Flame Chart)
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(
go.Icicle(
ids = df.ids,
labels = df.labels,
parents = df.parents,
root_color="lightgrey",
tiling = dict(
orientation='v',
flip='y'
)
)
)
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Down Direction (Icicle)
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(
go.Icicle(
ids = df.ids,
labels = df.labels,
parents = df.parents,
root_color="lightgrey",
tiling = dict(
orientation='v'
)
)
)
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Right Direction
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(
go.Icicle(
ids = df.ids,
labels = df.labels,
parents = df.parents,
root_color="lightgrey",
tiling = dict(
orientation='h'
)
)
)
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Left Direction
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(
go.Icicle(
ids = df.ids,
labels = df.labels,
parents = df.parents,
root_color="lightgrey",
tiling = dict(
orientation='h',
flip='x'
)
)
)
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
Reference¶
See function reference for px.icicle()
or https://plotly.com/python/reference/icicle/ for more information and chart attribute options!
What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )
from dash import Dash, dcc, html
app = Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
])
app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter