Show Sidebar Hide Sidebar

Map Subplots in Python

How to make map subplots and map small multiples in Python.

New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

US map small multiples

In [1]:
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/1962_2006_walmart_store_openings.csv')
df.head()

data = []
layout = dict(
    title = 'New Walmart Stores per year 1962-2006<br>\
Source: <a href="http://www.econ.umn.edu/~holmes/data/WalMart/index.html">\
University of Minnesota</a>',
    # showlegend = False,
    autosize = False,
    width = 1000,
    height = 900,
    hovermode = False,
    legend = dict(
        x=0.7,
        y=-0.1,
        bgcolor="rgba(255, 255, 255, 0)",
        font = dict( size=11 ),
    )
)
years = df['YEAR'].unique()

for i in range(len(years)):
    geo_key = 'geo'+str(i+1) if i != 0 else 'geo'
    lons = list(df[ df['YEAR'] == years[i] ]['LON'])
    lats = list(df[ df['YEAR'] == years[i] ]['LAT'])
    # Walmart store data
    data.append(
        dict(
            type = 'scattergeo',
            showlegend=False,
            lon = lons,
            lat = lats,
            geo = geo_key,
            name = int(years[i]),
            marker = dict(
                color = "rgb(0, 0, 255)",
                opacity = 0.5
            )
        )
    )
    # Year markers
    data.append(
        dict(
            type = 'scattergeo',
            showlegend = False,
            lon = [-78],
            lat = [47],
            geo = geo_key,
            text = [years[i]],
            mode = 'text',
        )
    )
    layout[geo_key] = dict(
        scope = 'usa',
        showland = True,
        landcolor = 'rgb(229, 229, 229)',
        showcountries = False,
        domain = dict( x = [], y = [] ),
        subunitcolor = "rgb(255, 255, 255)",
    )


def draw_sparkline( domain, lataxis, lonaxis ):
    ''' Returns a sparkline layout object for geo coordinates  '''
    return dict(
        showland = False,
        showframe = False,
        showcountries = False,
        showcoastlines = False,
        domain = domain,
        lataxis = lataxis,
        lonaxis = lonaxis,
        bgcolor = 'rgba(255,200,200,0.0)'
    )

# Stores per year sparkline
layout['geo44'] = draw_sparkline({'x':[0.6,0.8], 'y':[0,0.15]}, \
                                 {'range':[-5.0, 30.0]}, {'range':[0.0, 40.0]} )
data.append(
    dict(
        type = 'scattergeo',
        mode = 'lines',
        lat = list(df.groupby(by=['YEAR']).count()['storenum']/1e1),
        lon = list(range(len(df.groupby(by=['YEAR']).count()['storenum']/1e1))),
        line = dict( color = "rgb(0, 0, 255)" ),
        name = "New stores per year<br>Peak of 178 stores per year in 1990",
        geo = 'geo44',
    )
)

# Cumulative sum sparkline
layout['geo45'] = draw_sparkline({'x':[0.8,1], 'y':[0,0.15]}, \
                                 {'range':[-5.0, 50.0]}, {'range':[0.0, 50.0]} )
data.append(
    dict(
        type = 'scattergeo',
        mode = 'lines',
        lat = list(df.groupby(by=['YEAR']).count().cumsum()['storenum']/1e2),
        lon = list(range(len(df.groupby(by=['YEAR']).count()['storenum']/1e1))),
        line = dict( color = "rgb(214, 39, 40)" ),
        name ="Cumulative sum<br>3176 stores total in 2006",
        geo = 'geo45',
    )
)

z = 0
COLS = 5
ROWS = 9
for y in reversed(range(ROWS)):
    for x in range(COLS):
        geo_key = 'geo'+str(z+1) if z != 0 else 'geo'
        layout[geo_key]['domain']['x'] = [float(x)/float(COLS), float(x+1)/float(COLS)]
        layout[geo_key]['domain']['y'] = [float(y)/float(ROWS), float(y+1)/float(ROWS)]
        z=z+1
        if z > 42:
            break

fig = go.Figure(data=data, layout=layout)
fig.update_layout(width=800)
fig.show()

Reference

See https://plot.ly/python/reference/#scattergeo for more information and chart attribute options!