Show Sidebar Hide Sidebar

Scatter Plots on Maps in Python

How to make scatter plots on maps in Python. Scatter plots on maps highlight geographic areas and can be colored by value.

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

U.S. Airports Map

In [1]:
import plotly.plotly as py
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_february_us_airport_traffic.csv')
df.head()

df['text'] = df['airport'] + '' + df['city'] + ', ' + df['state'] + '' + 'Arrivals: ' + df['cnt'].astype(str)

scl = [ [0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\
    [0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"] ]

data = [ dict(
        type = 'scattergeo',
        locationmode = 'USA-states',
        lon = df['long'],
        lat = df['lat'],
        text = df['text'],
        mode = 'markers',
        marker = dict(
            size = 8,
            opacity = 0.8,
            reversescale = True,
            autocolorscale = False,
            symbol = 'square',
            line = dict(
                width=1,
                color='rgba(102, 102, 102)'
            ),
            colorscale = scl,
            cmin = 0,
            color = df['cnt'],
            cmax = df['cnt'].max(),
            colorbar=dict(
                title="Incoming flightsFebruary 2011"
            )
        ))]

layout = dict(
        title = 'Most trafficked US airports<br>(Hover for airport names)',
        colorbar = True,
        geo = dict(
            scope='usa',
            projection=dict( type='albers usa' ),
            showland = True,
            landcolor = "rgb(250, 250, 250)",
            subunitcolor = "rgb(217, 217, 217)",
            countrycolor = "rgb(217, 217, 217)",
            countrywidth = 0.5,
            subunitwidth = 0.5
        ),
    )

fig = dict( data=data, layout=layout )
py.iplot( fig, validate=False, filename='d3-airports' )
Out[1]:

North American Precipitation Map

In [3]:
import plotly.plotly as py
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2015_06_30_precipitation.csv')

scl = [0,"rgb(150,0,90)"],[0.125,"rgb(0, 0, 200)"],[0.25,"rgb(0, 25, 255)"],\
[0.375,"rgb(0, 152, 255)"],[0.5,"rgb(44, 255, 150)"],[0.625,"rgb(151, 255, 0)"],\
[0.75,"rgb(255, 234, 0)"],[0.875,"rgb(255, 111, 0)"],[1,"rgb(255, 0, 0)"]

data = [ dict(
    lat = df['Lat'],
    lon = df['Lon'],
    text = df['Globvalue'].astype(str) + ' inches',
    marker = dict(
        color = df['Globvalue'],
        colorscale = scl,
        reversescale = True,
        opacity = 0.7,
        size = 2,
        colorbar = dict(
            thickness = 10,
            titleside = "right",
            outlinecolor = "rgba(68, 68, 68, 0)",
            ticks = "outside",
            ticklen = 3,
            showticksuffix = "last",
            ticksuffix = " inches",
            dtick = 0.1
        ),
    ),
    type = 'scattergeo'
) ]

layout = dict(
    geo = dict(
        scope = 'north america',
        showland = True,
        landcolor = "rgb(212, 212, 212)",
        subunitcolor = "rgb(255, 255, 255)",
        countrycolor = "rgb(255, 255, 255)",
        showlakes = True,
        lakecolor = "rgb(255, 255, 255)",
        showsubunits = True,
        showcountries = True,
        resolution = 50,
        projection = dict(
            type = 'conic conformal',
            rotation = dict(
                lon = -100
            )
        ),
        lonaxis = dict(
            showgrid = True,
            gridwidth = 0.5,
            range= [ -140.0, -55.0 ],
            dtick = 5
        ),
        lataxis = dict (
            showgrid = True,
            gridwidth = 0.5,
            range= [ 20.0, 60.0 ],
            dtick = 5
        )
    ),
    title = 'US Precipitation 06-30-2015<br>Source: <a href="http://water.weather.gov/precip/">NOAA</a>',
)
fig = { 'data':data, 'layout':layout }
py.iplot(fig, filename='precipitation')
Out[3]:

Reference

See https://plot.ly/python/reference/#scattergeo and https://plot.ly/python/reference/#layout-geo for more information and chart attribute options!

Still need help?
Contact Us

For guaranteed 24 hour response turnarounds, upgrade to a Developer Support Plan.