Show Sidebar Hide Sidebar

Tables in Python

How to make tables in Python with Plotly.

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

Version Check

Note: Tables are available in version 1.9.2+
Run pip install plotly --upgrade to update your Plotly version

In [1]:
import plotly
plotly.__version__
Out[1]:
'2.0.2'

Simple Table

In [2]:
import plotly.plotly as py
import plotly.figure_factory as ff

data_matrix = [['Country', 'Year', 'Population'],
               ['United States', 2000, 282200000],
               ['Canada', 2000, 27790000],
               ['United States', 2005, 295500000],
               ['Canada', 2005, 32310000],
               ['United States', 2010, 309000000],
               ['Canada', 2010, 34000000]]

table = ff.create_table(data_matrix)
py.iplot(table, filename='simple_table')
Out[2]:
In [3]:
import plotly.plotly as py
import plotly.figure_factory as ff

data_matrix = [['User', 'Language', 'Chart Type', '# of Views'],
               ['<a href="https://plot.ly/~empet/folder/home">empet</a>',
                '<a href="https://plot.ly/python/">Python</a>',
                '<a href="https://plot.ly/~empet/8614/">Network Graph</a>',
                298],
               ['<a href="https://plot.ly/~Grondo/folder/home">Grondo</a>',
                '<a href="https://plot.ly/matlab/">Matlab</a>',
                '<a href="https://plot.ly/~Grondo/42/">Subplots</a>',
                356],
               ['<a href="https://plot.ly/~Dreamshot/folder/home">Dreamshot</a>',
                '<a href="https://help.plot.ly/tutorials/">Web App</a>',
                '<a href="https://plot.ly/~Dreamshot/6575/_2014-us-city-populations/">Bubble Map</a>',
                262],
               ['<a href="https://plot.ly/~FiveThirtyEight/folder/home">FiveThirtyEight</a>',
                '<a href="https://help.plot.ly/tutorials/">Web App</a>',
                '<a href="https://plot.ly/~FiveThirtyEight/30/">Scatter</a>',
                692],
               ['<a href="https://plot.ly/~cpsievert/folder/home">cpsievert</a>',
                '<a href="https://plot.ly/r/">R</a>',
                '<a href="https://plot.ly/~cpsievert/1130/">Surface</a>',
                302]]

table = ff.create_table(data_matrix)
py.iplot(table, filename='linked_table')
Out[3]:

Use LaTeX

In [4]:
import plotly.plotly as py
import plotly.figure_factory as ff

data_matrix = [['Name', 'Equation'],
               ['Pythagorean Theorem', '$a^{2}+b^{2}=c^{2}$'],
               ['Euler\'s Formula', '$F-E+V=2$'],
               ['The Origin of Complex Numbers', '$i^{2}=-1$'],
               ['Einstein\'s Theory of Relativity', '$E=m c^{2}$']]

table = ff.create_table(data_matrix)
py.iplot(table, filename='latex_table')
Out[4]:

Use a Panda's Dataframe

In [5]:
import plotly.plotly as py
import plotly.figure_factory as ff

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv')
df_sample = df[100:120]

table = ff.create_table(df_sample)
py.iplot(table, filename='pandas_table')
Out[5]:

Include and Index Column

In [6]:
import plotly.plotly as py
import plotly.figure_factory as ff

from datetime import date
import pandas_datareader.data as web

di = web.DataReader("aapl", 'yahoo', date(2009, 1, 1), date(2009, 3, 1))

# Converting timestamp to date 
di["Date1"] = di.index.date
di.set_index("Date1", drop=True, inplace=True)

table = ff.create_table(di, index=True, index_title='Date')
py.iplot(table, filename='index_table_pd')
Out[6]:

Custom Table Colors

A custom colorscale should be a list[list]:
[[0, 'Header_Color'],[.5, 'Odd_Row_Color'],[1, 'Even_Row_Color']]

In [7]:
import plotly.plotly as py
import plotly.figure_factory as ff

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv')
df_sample = df[400:410]

colorscale = [[0, '#4d004c'],[.5, '#f2e5ff'],[1, '#ffffff']]

table = ff.create_table(df_sample, colorscale=colorscale)
py.iplot(table, filename='color_table')
Out[7]:

Custom Font Colors

In [8]:
import plotly.plotly as py
import plotly.figure_factory as ff

text = [['Team', 'Rank'], ['A', 1], ['B', 2], ['C', 3], ['D', 4], ['E', 5], ['F', 6]]

colorscale = [[0, '#272D31'],[.5, '#ffffff'],[1, '#ffffff']]
font=['#FCFCFC', '#00EE00', '#008B00', '#004F00', '#660000', '#CD0000', '#FF3030']

table = ff.create_table(text, colorscale=colorscale, font_colors=font)
table.layout.width=250
py.iplot(table, filename='font_table')
Out[8]:

Change Font Size

In [9]:
import plotly.plotly as py
import plotly.figure_factory as ff

data_matrix = [['Country', 'Year', 'Population'],
               ['United States', 2000, 282200000],
               ['Canada', 2000, 27790000],
               ['United States', 2005, 295500000],
               ['Canada', 2005, 32310000],
               ['United States', 2010, 309000000],
               ['Canada', 2010, 34000000]]

table = ff.create_table(data_matrix, index=True)

# Make text size larger
for i in range(len(table.layout.annotations)):
    table.layout.annotations[i].font.size = 20

py.iplot(table, filename='index_table')
Out[9]:

Tables with Graphs

In [10]:
import plotly.plotly as py
import plotly.graph_objs as go
import plotly.figure_factory as ff

# Add table data
table_data = [['Team', 'Wins', 'Losses', 'Ties'],
              ['Montréal<br>Canadiens', 18, 4, 0],
              ['Dallas Stars', 18, 5, 0],
              ['NY Rangers', 16, 5, 0], 
              ['Boston<br>Bruins', 13, 8, 0],
              ['Chicago<br>Blackhawks', 13, 8, 0],
              ['LA Kings', 13, 8, 0],
              ['Ottawa<br>Senators', 12, 5, 0]]
# Initialize a figure with FF.create_table(table_data)
figure = ff.create_table(table_data, height_constant=60)

# Add graph data
teams = ['Montréal Canadiens', 'Dallas Stars', 'NY Rangers',
         'Boston Bruins', 'Chicago Blackhawks', 'LA Kings', 'Ottawa Senators']
GFPG = [3.54, 3.48, 3.0, 3.27, 2.83, 2.45, 3.18]
GAPG = [2.17, 2.57, 2.0, 2.91, 2.57, 2.14, 2.77]
# Make traces for graph
trace1 = go.Scatter(x=teams, y=GFPG,
                    marker=dict(color='#0099ff'),
                    name='Goals For<br>Per Game',
                    xaxis='x2', yaxis='y2')
trace2 = go.Scatter(x=teams, y=GAPG,
                    marker=dict(color='#404040'),
                    name='Goals Against<br>Per Game',
                    xaxis='x2', yaxis='y2')

# Add trace data to figure
figure['data'].extend(go.Data([trace1, trace2]))

# Edit layout for subplots
figure.layout.xaxis.update({'domain': [0, .5]})
figure.layout.xaxis2.update({'domain': [0.6, 1.]})
# The graph's yaxis MUST BE anchored to the graph's xaxis
figure.layout.yaxis2.update({'anchor': 'x2'})
figure.layout.yaxis2.update({'title': 'Goals'})
# Update the margins to add a title and see graph x-labels. 
figure.layout.margin.update({'t':50, 'b':100})
figure.layout.update({'title': '2016 Hockey Stats'})

# Plot!
py.iplot(figure, filename='subplot_table')
Out[10]:
In [14]:
import plotly.plotly as py
import plotly.graph_objs as go
import plotly.figure_factory as FF

# Add table data
table_data = [['Team', 'Wins', 'Losses', 'Ties'],
              ['Montréal<br>Canadiens', 18, 4, 0],
              ['Dallas Stars', 18, 5, 0],
              ['NY Rangers', 16, 5, 0], 
              ['Boston<br>Bruins', 13, 8, 0],
              ['Chicago<br>Blackhawks', 13, 8, 0],
              ['Ottawa<br>Senators', 12, 5, 0]]
# Initialize a figure with FF.create_table(table_data)
figure = FF.create_table(table_data, height_constant=60)

# Add graph data
teams = ['Montréal Canadiens', 'Dallas Stars', 'NY Rangers',
         'Boston Bruins', 'Chicago Blackhawks', 'Ottawa Senators']
GFPG = [3.54, 3.48, 3.0, 3.27, 2.83, 3.18]
GAPG = [2.17, 2.57, 2.0, 2.91, 2.57, 2.77]
# Make traces for graph
trace1 = go.Bar(x=teams, y=GFPG, xaxis='x2', yaxis='y2',
                marker=dict(color='#0099ff'),
                name='Goals For<br>Per Game')
trace2 = go.Bar(x=teams, y=GAPG, xaxis='x2', yaxis='y2',
                marker=dict(color='#404040'),
                name='Goals Against<br>Per Game')

# Add trace data to figure
figure['data'].extend(go.Data([trace1, trace2]))

# Edit layout for subplots
figure.layout.yaxis.update({'domain': [0, .45]})
figure.layout.yaxis2.update({'domain': [.6, 1]})
# The graph's yaxis2 MUST BE anchored to the graph's xaxis2 and vice versa
figure.layout.yaxis2.update({'anchor': 'x2'})
figure.layout.xaxis2.update({'anchor': 'y2'})
figure.layout.yaxis2.update({'title': 'Goals'})
# Update the margins to add a title and see graph x-labels. 
figure.layout.margin.update({'t':75, 'l':50})
figure.layout.update({'title': '2016 Hockey Stats'})
# Update the height because adding a graph vertically will interact with
# the plot height calculated for the table
figure.layout.update({'height':800})

# Plot!
py.iplot(figure, filename='subplot_table_vertical')
Out[14]:
In [15]:
import plotly.plotly as py
import plotly.graph_objs as go
import plotly.figure_factory as FF

# Add table data
table_data = [['Prominence', 'Percent', 'RGB Value'],
              [1, '38%', 'rgb(56, 75, 126)'],
              [2, '27%', 'rgb(18, 36, 37)'],
              [3, '18%', 'rgb(34, 53, 101)'], 
              [4, '10%', 'rgb(36, 55, 57)'],
              [5, '7%', 'rgb(6, 4, 4)']]
# Initialize a figure with FF.create_table(table_data)
figure = FF.create_table(table_data, height_constant=60)

# Add graph data
trace1={'labels': ['1st', '2nd', '3rd', '4th', '5th'],
        'values': [38, 27, 18, 10, 7],
        'type': 'pie',
        'name': 'Starry Night',
        'marker': {'colors': ['rgb(56, 75, 126)',
                              'rgb(18, 36, 37)',
                              'rgb(34, 53, 101)',
                              'rgb(36, 55, 57)',
                              'rgb(6, 4, 4)']},
            'domain': {'x': [0, 1],
                       'y': [.4, 1]},
            'hoverinfo':'label+percent+name',
            'textinfo':'none'
        }

# Add trace data to figure
figure['data'].extend(go.Data([trace1]))

# Edit layout for subplots
figure.layout.yaxis.update({'domain': [0, .30]})
# The graph's yaxis2 MUST BE anchored to the graph's xaxis2 and vice versa
# Update the margins to add a title and see graph x-labels. 
figure.layout.margin.update({'t':75, 'l':50})
figure.layout.update({'title': 'Starry Night'})
# Update the height because adding a graph vertically will interact with
# the plot height calculated for the table
figure.layout.update({'height':800})

# Plot!
py.iplot(figure)
Out[15]:

Reference

In [16]:
help(FF.create_table)
Help on function create_table in module plotly.figure_factory._table:

create_table(table_text, colorscale=None, font_colors=None, index=False, index_title='', annotation_offset=0.45, height_constant=30, hoverinfo='none', **kwargs)
    BETA function that creates data tables
    
    :param (pandas.Dataframe | list[list]) text: data for table.
    :param (str|list[list]) colorscale: Colorscale for table where the
        color at value 0 is the header color, .5 is the first table color
        and 1 is the second table color. (Set .5 and 1 to avoid the striped
        table effect). Default=[[0, '#66b2ff'], [.5, '#d9d9d9'],
        [1, '#ffffff']]
    :param (list) font_colors: Color for fonts in table. Can be a single
        color, three colors, or a color for each row in the table.
        Default=['#000000'] (black text for the entire table)
    :param (int) height_constant: Constant multiplied by # of rows to
        create table height. Default=30.
    :param (bool) index: Create (header-colored) index column index from
        Pandas dataframe or list[0] for each list in text. Default=False.
    :param (string) index_title: Title for index column. Default=''.
    :param kwargs: kwargs passed through plotly.graph_objs.Heatmap.
        These kwargs describe other attributes about the annotated Heatmap
        trace such as the colorscale. For more information on valid kwargs
        call help(plotly.graph_objs.Heatmap)
    
    Example 1: Simple Plotly Table
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_table
    
    text = [['Country', 'Year', 'Population'],
            ['US', 2000, 282200000],
            ['Canada', 2000, 27790000],
            ['US', 2010, 309000000],
            ['Canada', 2010, 34000000]]
    
    table = create_table(text)
    py.iplot(table)
    ```
    
    Example 2: Table with Custom Coloring
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_table
    
    text = [['Country', 'Year', 'Population'],
            ['US', 2000, 282200000],
            ['Canada', 2000, 27790000],
            ['US', 2010, 309000000],
            ['Canada', 2010, 34000000]]
    
    table = create_table(text,
                         colorscale=[[0, '#000000'],
                                     [.5, '#80beff'],
                                     [1, '#cce5ff']],
                         font_colors=['#ffffff', '#000000',
                                    '#000000'])
    py.iplot(table)
    ```
    Example 3: Simple Plotly Table with Pandas
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_table
    
    import pandas as pd
    
    df = pd.read_csv('http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/data/gapminderDataFiveYear.txt', sep='  ')
    df_p = df[0:25]
    
    table_simple = create_table(df_p)
    py.iplot(table_simple)
    ```

Still need help?
Contact Us

For guaranteed 24 hour response turnarounds, upgrade to a Developer Support Plan.