Cmocean Colorscales in Python/v3
How to make Cmocean Colorscales in Python with Plotly.
Note: this page is part of the documentation for version 3 of Plotly.py, which is not the most recent version.
See our Version 4 Migration Guide for information about how to upgrade.
See our Version 4 Migration Guide for information about how to upgrade.
New to Plotly?¶
Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
Imports¶
In [2]:
import plotly.plotly as py
import plotly.graph_objs as go
from plotly import tools
import cmocean
import numpy as np
import os
Defining Colormaps¶
In [3]:
import cmocean
def cmocean_to_plotly(cmap, pl_entries):
h = 1.0/(pl_entries-1)
pl_colorscale = []
for k in range(pl_entries):
C = map(np.uint8, np.array(cmap(k*h)[:3])*255)
pl_colorscale.append([k*h, 'rgb'+str((C[0], C[1], C[2]))])
return pl_colorscale
The examples data can be downloaded from here.
In [4]:
# Plotting the colorscale.
example_dir = os.path.join(os.path.dirname('__file__'), "examples")
hist2d = np.loadtxt(os.path.join(example_dir, "hist2d.txt"))
st_helens = np.loadtxt(os.path.join(example_dir,
"st-helens_before-modified.txt.gz")).T
dx = dy = 0.05
y, x = np.mgrid[-5 : 5 + dy : dy, -5 : 10 + dx : dx]
z = np.sin(x)**10 + np.cos(10 + y*x) + np.cos(x) + 0.2*y + 0.1*x
elem_len = [len(hist2d), len(st_helens), len(z)]
max_len = max(elem_len)
def colorscale_plot(colorscale, title):
trace1 = go.Heatmap(z=hist2d, colorscale=colorscale, showscale=False)
trace2 = go.Heatmap(z=st_helens, colorscale=colorscale, y0=-5, x0=-5)
trace3 = go.Heatmap(z=z,colorscale=colorscale, showscale=False)
fig = tools.make_subplots(rows=1, cols=3, print_grid=False)
fig.append_trace(trace1, 1, 1)
fig.append_trace(trace2, 1, 2)
fig.append_trace(trace3, 1, 3)
fig['layout'].update(title=title)
fig['layout']['xaxis2'].update(range=[0, 450])
fig['layout']['yaxis2'].update(range=[0, 270])
return fig
Thermal¶
In [5]:
thermal = cmocean_to_plotly(cmocean.cm.thermal, max_len)
py.iplot(colorscale_plot(colorscale=thermal, title='Thermal'))
Out[5]:
Haline¶
In [8]:
haline = cmocean_to_plotly(cmocean.cm.haline, max_len)
py.iplot(colorscale_plot(colorscale=haline, title='Haline'))
Out[8]:
Solar¶
In [9]:
solar = cmocean_to_plotly(cmocean.cm.solar, max_len)
py.iplot(colorscale_plot(colorscale=solar, title='Solar'))
Out[9]:
Ice¶
In [10]:
ice = cmocean_to_plotly(cmocean.cm.ice, max_len)
py.iplot(colorscale_plot(colorscale=ice, title='Ice'))
Out[10]:
Gray¶
In [11]:
gray = cmocean_to_plotly(cmocean.cm.gray, max_len)
py.iplot(colorscale_plot(colorscale=gray, title='Gray'))
Out[11]:
Oxy¶
In [12]:
oxy = cmocean_to_plotly(cmocean.cm.oxy, max_len)
py.iplot(colorscale_plot(colorscale=oxy, title='Oxy'))
Out[12]:
Deep¶
In [13]:
deep = cmocean_to_plotly(cmocean.cm.deep, max_len)
py.iplot(colorscale_plot(colorscale=deep, title='Deep'))
Out[13]:
Dense¶
In [15]:
dense = cmocean_to_plotly(cmocean.cm.dense, max_len)
py.iplot(colorscale_plot(colorscale=dense, title='Dense'))
Out[15]:
Algae¶
In [16]:
algae = cmocean_to_plotly(cmocean.cm.algae, max_len)
py.iplot(colorscale_plot(colorscale=algae, title='Algae'))
Out[16]:
Matter¶
In [17]:
matter = cmocean_to_plotly(cmocean.cm.matter, max_len)
py.iplot(colorscale_plot(colorscale=matter, title='Matter'))
Out[17]:
Turbid¶
In [18]:
turbid = cmocean_to_plotly(cmocean.cm.turbid, max_len)
py.iplot(colorscale_plot(colorscale=turbid, title='Turbid'))
Out[18]:
Speed¶
In [20]:
speed = cmocean_to_plotly(cmocean.cm.speed, max_len)
py.iplot(colorscale_plot(colorscale=speed, title='Speed'))
Out[20]:
Amp¶
In [21]:
amp = cmocean_to_plotly(cmocean.cm.amp, max_len)
py.iplot(colorscale_plot(colorscale=amp, title='Amp'))
Out[21]:
Tempo¶
In [22]:
tempo = cmocean_to_plotly(cmocean.cm.tempo, max_len)
py.iplot(colorscale_plot(colorscale=tempo, title='Tempo'))
Out[22]:
Phase¶
In [23]:
phase = cmocean_to_plotly(cmocean.cm.phase, max_len)
py.iplot(colorscale_plot(colorscale=phase, title='Phase'))
Out[23]:
Balance¶
In [24]:
balance = cmocean_to_plotly(cmocean.cm.balance, max_len)
py.iplot(colorscale_plot(colorscale=balance, title='Balance'))
Out[24]:
Delta¶
In [25]:
delta = cmocean_to_plotly(cmocean.cm.delta, max_len)
py.iplot(colorscale_plot(colorscale=delta, title='Delta'))
Out[25]:
Curl¶
In [26]:
curl = cmocean_to_plotly(cmocean.cm.curl, max_len)
py.iplot(colorscale_plot(colorscale=curl, title='Curl'))
Out[26]:
Reference¶
Learn more about Plotly colorscales here: https://plotly.com/python/colorscales/
Acknowledgment¶
Special thanks to Kristen Thyng for the statistics of colormaps.