Show Sidebar Hide Sidebar

# Trisurf Plots in Python/v3

How to make tri-surf plots in Python with Plotly. Trisurfs are formed by replacing the boundaries of a compact surface by touching triangles.

Note: this page is part of the documentation for version 3 of Plotly.py, which is not the most recent version.
See our Version 4 Migration Guide for information about how to upgrade.

#### New to Plotly?¶

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

#### Version Check¶

Note: Trisurfs are available in version 1.11.0+
Run pip install plotly --upgrade to update your Plotly version

In [1]:
import plotly
plotly.__version__

Out[1]:
'2.4.1'

#### Torus¶

In [2]:
import plotly.plotly as py
import plotly.figure_factory as FF
import plotly.graph_objs as go

import numpy as np
from scipy.spatial import Delaunay

u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, 2*np.pi, 20)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

x = (3 + (np.cos(v)))*np.cos(u)
y = (3 + (np.cos(v)))*np.sin(u)
z = np.sin(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

fig1 = FF.create_trisurf(x=x, y=y, z=z,
simplices=simplices,
title="Torus", aspectratio=dict(x=1, y=1, z=0.3))
py.iplot(fig1, filename="3dFolder/Torus")

Out[2]:

#### Mobius Band¶

In [3]:
import plotly.plotly as py
import plotly.figure_factory as FF
import plotly.graph_objs as go

import numpy as np
from scipy.spatial import Delaunay

u = np.linspace(0, 2*np.pi, 24)
v = np.linspace(-1, 1, 8)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

tp = 1 + 0.5*v*np.cos(u/2.)
x = tp*np.cos(u)
y = tp*np.sin(u)
z = 0.5*v*np.sin(u/2.)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

fig1 = FF.create_trisurf(x=x, y=y, z=z,
colormap="Portland",
simplices=simplices,
title="Mobius Band")
py.iplot(fig1, filename="Mobius-Band")

Out[3]:

#### Boy's Surface¶

In [4]:
import plotly.plotly as py
import plotly.figure_factory as FF
import plotly.graph_objs as go

import numpy as np
from scipy.spatial import Delaunay

u=np.linspace(-np.pi/2, np.pi/2, 60)
v=np.linspace(0, np.pi, 60)
u,v=np.meshgrid(u,v)
u=u.flatten()
v=v.flatten()

x = (np.sqrt(2)*(np.cos(v)*np.cos(v))*np.cos(2*u) + np.cos(u)*np.sin(2*v))/(2 - np.sqrt(2)*np.sin(3*u)*np.sin(2*v))
y = (np.sqrt(2)*(np.cos(v)*np.cos(v))*np.sin(2*u) - np.sin(u)*np.sin(2*v))/(2 - np.sqrt(2)*np.sin(3*u)*np.sin(2*v))
z = (3*(np.cos(v)*np.cos(v)))/(2 - np.sqrt(2)*np.sin(3*u)*np.sin(2*v))

points2D = np.vstack([u, v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

fig1 = FF.create_trisurf(x=x, y=y, z=z,
colormap=['rgb(50, 0, 75)', 'rgb(200, 0, 200)', '#c8dcc8'],
show_colorbar=True,
simplices=simplices,
title="Boy's Surface")
py.iplot(fig1, filename="Boy's Surface")

Out[4]:

#### Change Colorscale Variable¶

In [5]:
import plotly.plotly as py
import plotly.figure_factory as FF
import plotly.graph_objs as go

import numpy as np
from scipy.spatial import Delaunay

u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, 2*np.pi, 20)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

x = (3 + (np.cos(v)))*np.cos(u)
y = (3 + (np.cos(v)))*np.sin(u)
z = np.sin(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# define a function that calculates the distance
# from the origin to use as the color variable
def dist_origin(x, y, z):
return np.sqrt((1.0 * x)**2 + (1.0 * y)**2 + (1.0 * z)**2)

fig1 = FF.create_trisurf(x=x, y=y, z=z, color_func=dist_origin,
colormap = [(0.4, 0.15, 0), (1, 0.65, 0.12)],
show_colorbar=True,
simplices=simplices, title="Torus - Origin Distance Coloring",
aspectratio=dict(x=1, y=1, z=0.3))
py.iplot(fig1, filename="Torus - Origin Distance Coloring")

Out[5]:

#### Diverging Colormap¶

In [6]:
import plotly.plotly as py
import plotly.figure_factory as FF
import plotly.graph_objs as go

import numpy as np
from scipy.spatial import Delaunay

u = np.linspace(-np.pi, np.pi, 30)
v = np.linspace(-np.pi, np.pi, 30)
u, v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

x = u
y = u*np.cos(v)
z = u*np.sin(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# define a function for the color assignment
def dist_from_x_axis(x, y, z):
return x

fig1 = FF.create_trisurf(x=x, y=y, z=z,
colormap=['rgb(255, 155, 120)', 'rgb(255, 153, 255)', ],
show_colorbar=True,
simplices=simplices, title="Light Cone",
showbackground=False, gridcolor='rgb(255, 20, 160)',
plot_edges=False, aspectratio=dict(x=1, y=1, z=0.75))
py.iplot(fig1, filename="Light Cone")

Out[6]:

#### Reference¶

In [7]:
help(FF.create_trisurf)

Help on function create_trisurf in module plotly.figure_factory._trisurf:

create_trisurf(x, y, z, simplices, colormap=None, show_colorbar=True, scale=None, color_func=None, title='Trisurf Plot', plot_edges=True, showbackground=True, backgroundcolor='rgb(230, 230, 230)', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', edges_color='rgb(50, 50, 50)', height=800, width=800, aspectratio=None)
Returns figure for a triangulated surface plot

:param (array) x: data values of x in a 1D array
:param (array) y: data values of y in a 1D array
:param (array) z: data values of z in a 1D array
:param (array) simplices: an array of shape (ntri, 3) where ntri is
the number of triangles in the triangularization. Each row of the
array contains the indicies of the verticies of each triangle
:param (str|tuple|list) colormap: either a plotly scale name, an rgb
or hex color, a color tuple or a list of colors. An rgb color is
of the form 'rgb(x, y, z)' where x, y, z belong to the interval
[0, 255] and a color tuple is a tuple of the form (a, b, c) where
a, b and c belong to [0, 1]. If colormap is a list, it must
contain the valid color types aforementioned as its members
:param (bool) show_colorbar: determines if colorbar is visible
:param (list|array) scale: sets the scale values to be used if a non-
linearly interpolated colormap is desired. If left as None, a
linear interpolation between the colors will be excecuted
:param (function|list) color_func: The parameter that determines the
coloring of the surface. Takes either a function with 3 arguments
x, y, z or a list/array of color values the same length as
simplices. If None, coloring will only depend on the z axis
:param (str) title: title of the plot
:param (bool) plot_edges: determines if the triangles on the trisurf
are visible
:param (bool) showbackground: makes background in plot visible
:param (str) backgroundcolor: color of background. Takes a string of
the form 'rgb(x,y,z)' x,y,z are between 0 and 255 inclusive
:param (str) gridcolor: color of the gridlines besides the axes. Takes
a string of the form 'rgb(x,y,z)' x,y,z are between 0 and 255
inclusive
:param (str) zerolinecolor: color of the axes. Takes a string of the
form 'rgb(x,y,z)' x,y,z are between 0 and 255 inclusive
:param (str) edges_color: color of the edges, if plot_edges is True
:param (int|float) height: the height of the plot (in pixels)
:param (int|float) width: the width of the plot (in pixels)
:param (dict) aspectratio: a dictionary of the aspect ratio values for
the x, y and z axes. 'x', 'y' and 'z' take (int|float) values

Example 1: Sphere

# Necessary Imports for Trisurf
import numpy as np
from scipy.spatial import Delaunay

import plotly.plotly as py
from plotly.figure_factory import create_trisurf
from plotly.graph_objs import graph_objs

# Make data for plot
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, np.pi, 20)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

x = np.sin(v)*np.cos(u)
y = np.sin(v)*np.sin(u)
z = np.cos(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# Create a figure
fig1 = create_trisurf(x=x, y=y, z=z, colormap="Rainbow",
simplices=simplices)
# Plot the data
py.iplot(fig1, filename='trisurf-plot-sphere')


Example 2: Torus

# Necessary Imports for Trisurf
import numpy as np
from scipy.spatial import Delaunay

import plotly.plotly as py
from plotly.figure_factory import create_trisurf
from plotly.graph_objs import graph_objs

# Make data for plot
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, 2*np.pi, 20)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

x = (3 + (np.cos(v)))*np.cos(u)
y = (3 + (np.cos(v)))*np.sin(u)
z = np.sin(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# Create a figure
fig1 = create_trisurf(x=x, y=y, z=z, colormap="Viridis",
simplices=simplices)
# Plot the data
py.iplot(fig1, filename='trisurf-plot-torus')


Example 3: Mobius Band

# Necessary Imports for Trisurf
import numpy as np
from scipy.spatial import Delaunay

import plotly.plotly as py
from plotly.figure_factory import create_trisurf
from plotly.graph_objs import graph_objs

# Make data for plot
u = np.linspace(0, 2*np.pi, 24)
v = np.linspace(-1, 1, 8)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()

tp = 1 + 0.5*v*np.cos(u/2.)
x = tp*np.cos(u)
y = tp*np.sin(u)
z = 0.5*v*np.sin(u/2.)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# Create a figure
fig1 = create_trisurf(x=x, y=y, z=z, colormap=[(0.2, 0.4, 0.6), (1, 1, 1)],
simplices=simplices)
# Plot the data
py.iplot(fig1, filename='trisurf-plot-mobius-band')


Example 4: Using a Custom Colormap Function with Light Cone

# Necessary Imports for Trisurf
import numpy as np
from scipy.spatial import Delaunay

import plotly.plotly as py
from plotly.figure_factory import create_trisurf
from plotly.graph_objs import graph_objs

# Make data for plot
u=np.linspace(-np.pi, np.pi, 30)
v=np.linspace(-np.pi, np.pi, 30)
u,v=np.meshgrid(u,v)
u=u.flatten()
v=v.flatten()

x = u
y = u*np.cos(v)
z = u*np.sin(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# Define distance function
def dist_origin(x, y, z):
return np.sqrt((1.0 * x)**2 + (1.0 * y)**2 + (1.0 * z)**2)

# Create a figure
fig1 = create_trisurf(x=x, y=y, z=z,
colormap=['#FFFFFF', '#E4FFFE',
'#A4F6F9', '#FF99FE',
'#BA52ED'],
scale=[0, 0.6, 0.71, 0.89, 1],
simplices=simplices,
color_func=dist_origin)
# Plot the data
py.iplot(fig1, filename='trisurf-plot-custom-coloring')


Example 5: Enter color_func as a list of colors

# Necessary Imports for Trisurf
import numpy as np
from scipy.spatial import Delaunay
import random

import plotly.plotly as py
from plotly.figure_factory import create_trisurf
from plotly.graph_objs import graph_objs

# Make data for plot
u=np.linspace(-np.pi, np.pi, 30)
v=np.linspace(-np.pi, np.pi, 30)
u,v=np.meshgrid(u,v)
u=u.flatten()
v=v.flatten()

x = u
y = u*np.cos(v)
z = u*np.sin(v)

points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices

colors = []
color_choices = ['rgb(0, 0, 0)', '#6c4774', '#d6c7dd']

for index in range(len(simplices)):
colors.append(random.choice(color_choices))

fig = create_trisurf(
x, y, z, simplices,
color_func=colors,
show_colorbar=True,
edges_color='rgb(2, 85, 180)',
title=' Modern Art'
)

py.iplot(fig, filename="trisurf-plot-modern-art")