Show Sidebar Hide Sidebar

Violin Plots in Python

How to make violin plots in Python with Plotly.

 Violin Plot with Plotly Express

A violin plot is a statistical representation of numerical data. It is similar to a box plot, with the addition of a rotated kernel density plot on each side.

See also the list of other statistical charts.

Basic Violin Plot with Plotly Express

Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on "tidy" data.

In [1]:
import plotly.express as px

df = px.data.tips()
fig = px.violin(df, y="total_bill")
fig.show()

Violin plot with box and data points

In [2]:
import plotly.express as px

df = px.data.tips()
fig = px.violin(df, y="total_bill", box=True, # draw box plot inside the violin
                points='all', # can be 'outliers', or False
               )
fig.show()

Multiple Violin Plots

In [3]:
import plotly.express as px

df = px.data.tips()
fig = px.violin(df, y="tip", x="smoker", color="sex", box=True, points="all",
          hover_data=df.columns)
fig.show()
In [4]:
import plotly.express as px

df = px.data.tips()
fig = px.violin(df, y="tip", color="sex",
                violinmode='overlay', # draw violins on top of each other
                # default violinmode is 'group' as in example above
                hover_data=df.columns)
fig.show()

Violin Plot with go.Violin

If Plotly Express does not provide a good starting point, you can use the more generic function go.Violin from plotly.graph_objects. All the options of go.Violin are documented in the reference https://plot.ly/python/reference/#violin

Basic Violin Plot

In [5]:
import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")

fig = go.Figure(data=go.Violin(y=df['total_bill'], box_visible=True, line_color='black',
                               meanline_visible=True, fillcolor='lightseagreen', opacity=0.6,
                               x0='Total Bill'))

fig.update_layout(yaxis_zeroline=False)
fig.show()

Multiple Traces

In [6]:
import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")

fig = go.Figure()

days = ['Thur', 'Fri', 'Sat', 'Sun']

for day in days:
    fig.add_trace(go.Violin(x=df['day'][df['day'] == day],
                            y=df['total_bill'][df['day'] == day],
                            name=day,
                            box_visible=True,
                            meanline_visible=True))

fig.show()

Grouped Violin Plot

In [7]:
import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")

fig = go.Figure()

fig.add_trace(go.Violin(x=df['day'][ df['sex'] == 'Male' ],
                        y=df['total_bill'][ df['sex'] == 'Male' ],
                        legendgroup='M', scalegroup='M', name='M',
                        line_color='blue')
             )
fig.add_trace(go.Violin(x=df['day'][ df['sex'] == 'Female' ],
                        y=df['total_bill'][ df['sex'] == 'Female' ],
                        legendgroup='F', scalegroup='F', name='F',
                        line_color='orange')
             )

fig.update_traces(box_visible=True, meanline_visible=True)
fig.update_layout(violinmode='group')
fig.show()

Split Violin Plot

In [8]:
import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")

fig = go.Figure()

fig.add_trace(go.Violin(x=df['day'][ df['smoker'] == 'Yes' ],
                        y=df['total_bill'][ df['smoker'] == 'Yes' ],
                        legendgroup='Yes', scalegroup='Yes', name='Yes',
                        side='negative',
                        line_color='blue')
             )
fig.add_trace(go.Violin(x=df['day'][ df['smoker'] == 'No' ],
                        y=df['total_bill'][ df['smoker'] == 'No' ],
                        legendgroup='No', scalegroup='No', name='No',
                        side='positive',
                        line_color='orange')
             )
fig.update_traces(meanline_visible=True)
fig.update_layout(violingap=0, violinmode='overlay')
fig.show()

Advanced Violin Plot

In [9]:
import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")

pointpos_male = [-0.9,-1.1,-0.6,-0.3]
pointpos_female = [0.45,0.55,1,0.4]
show_legend = [True,False,False,False]

fig = go.Figure()

for i in range(0,len(pd.unique(df['day']))):
    fig.add_trace(go.Violin(x=df['day'][(df['sex'] == 'Male') &
                                        (df['day'] == pd.unique(df['day'])[i])],
                            y=df['total_bill'][(df['sex'] == 'Male')&
                                               (df['day'] == pd.unique(df['day'])[i])],
                            legendgroup='M', scalegroup='M', name='M',
                            side='negative',
                            pointpos=pointpos_male[i], # where to position points
                            line_color='lightseagreen',
                            showlegend=show_legend[i])
             )
    fig.add_trace(go.Violin(x=df['day'][(df['sex'] == 'Female') &
                                        (df['day'] == pd.unique(df['day'])[i])],
                            y=df['total_bill'][(df['sex'] == 'Female')&
                                               (df['day'] == pd.unique(df['day'])[i])],
                            legendgroup='F', scalegroup='F', name='F',
                            side='positive',
                            pointpos=pointpos_female[i],
                            line_color='mediumpurple',
                            showlegend=show_legend[i])
             )

# update characteristics shared by all traces
fig.update_traces(meanline_visible=True,
                  points='all', # show all points
                  jitter=0.05,  # add some jitter on points for better visibility
                  scalemode='count') #scale violin plot area with total count
fig.update_layout(
    title_text="Total bill distribution<br><i>scaled by number of bills per gender",
    violingap=0, violingroupgap=0, violinmode='overlay')
fig.show()

 Ridgeline plot

A ridgeline plot (previously known as Joy Plot) shows the distribution of a numerical value for several groups. They can be used for visualizing changes in distributions over time or space.

In [10]:
import plotly.graph_objects as go
from plotly.colors import n_colors
import numpy as np
np.random.seed(1)

# 12 sets of normal distributed random data, with increasing mean and standard deviation
data = (np.linspace(1, 2, 12)[:, np.newaxis] * np.random.randn(12, 200) +
            (np.arange(12) + 2 * np.random.random(12))[:, np.newaxis])

colors = n_colors('rgb(5, 200, 200)', 'rgb(200, 10, 10)', 12, colortype='rgb')

fig = go.Figure()
for data_line, color in zip(data, colors):
    fig.add_trace(go.Violin(x=data_line, line_color=color))

fig.update_traces(orientation='h', side='positive', width=3, points=False)
fig.update_layout(xaxis_showgrid=False, xaxis_zeroline=False)
fig.show()

Reference

See https://plot.ly/python/reference/#violin for more information and chart attribute options!