Show Sidebar Hide Sidebar

Biclustering documents with the Spectral Co-clustering algorithm in Scikit-learn

This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The ‘comp.os.ms-windows.misc’ category is excluded because it contains many posts containing nothing but data.

The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon’s Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents.

For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster.

For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans.

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

Version

In [1]:
import sklearn
sklearn.__version__
Out[1]:
'0.18'

Imports

In [2]:
from __future__ import print_function

print(__doc__)

from collections import defaultdict
import operator
import re
from time import time

import numpy as np

from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.cluster import MiniBatchKMeans
from sklearn.externals.six import iteritems
from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.cluster import v_measure_score
Automatically created module for IPython interactive environment

Calculations

In [3]:
def number_aware_tokenizer(doc):
    """ Tokenizer that maps all numeric tokens to a placeholder.

    For many applications, tokens that begin with a number are not directly
    useful, but the fact that such a token exists can be relevant.  By applying
    this form of dimensionality reduction, some methods may perform better.
    """
    token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b')
    tokens = token_pattern.findall(doc)
    tokens = ["#NUMBER" if token[0] in "0123456789_" else token
              for token in tokens]
    return tokens

# exclude 'comp.os.ms-windows.misc'
categories = ['alt.atheism', 'comp.graphics',
              'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
              'comp.windows.x', 'misc.forsale', 'rec.autos',
              'rec.motorcycles', 'rec.sport.baseball',
              'rec.sport.hockey', 'sci.crypt', 'sci.electronics',
              'sci.med', 'sci.space', 'soc.religion.christian',
              'talk.politics.guns', 'talk.politics.mideast',
              'talk.politics.misc', 'talk.religion.misc']
newsgroups = fetch_20newsgroups(categories=categories)
y_true = newsgroups.target

vectorizer = TfidfVectorizer(stop_words='english', min_df=5,
                             tokenizer=number_aware_tokenizer)
cocluster = SpectralCoclustering(n_clusters=len(categories),
                                 svd_method='arpack', random_state=0)
kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000,
                         random_state=0)

print("Vectorizing...")
X = vectorizer.fit_transform(newsgroups.data)

print("Coclustering...")
start_time = time()
cocluster.fit(X)
y_cocluster = cocluster.row_labels_
print("Done in {:.2f}s. V-measure: {:.4f}".format(
    time() - start_time,
    v_measure_score(y_cocluster, y_true)))

print("MiniBatchKMeans...")
start_time = time()
y_kmeans = kmeans.fit_predict(X)
print("Done in {:.2f}s. V-measure: {:.4f}".format(
    time() - start_time,
    v_measure_score(y_kmeans, y_true)))

feature_names = vectorizer.get_feature_names()
document_names = list(newsgroups.target_names[i] for i in newsgroups.target)


def bicluster_ncut(i):
    rows, cols = cocluster.get_indices(i)
    if not (np.any(rows) and np.any(cols)):
        import sys
        return sys.float_info.max
    row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0]
    col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0]
    # Note: the following is identical to X[rows[:, np.newaxis], cols].sum() but
    # much faster in scipy <= 0.16
    weight = X[rows][:, cols].sum()
    cut = (X[row_complement][:, cols].sum() +
           X[rows][:, col_complement].sum())
    return cut / weight


def most_common(d):
    """Items of a defaultdict(int) with the highest values.

    Like Counter.most_common in Python >=2.7.
    """
    return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True)


bicluster_ncuts = list(bicluster_ncut(i)
                       for i in range(len(newsgroups.target_names)))
best_idx = np.argsort(bicluster_ncuts)[:5]

print()
print("Best biclusters:")
print("----------------")
for idx, cluster in enumerate(best_idx):
    n_rows, n_cols = cocluster.get_shape(cluster)
    cluster_docs, cluster_words = cocluster.get_indices(cluster)
    if not len(cluster_docs) or not len(cluster_words):
        continue

    # categories
    counter = defaultdict(int)
    for i in cluster_docs:
        counter[document_names[i]] += 1
    cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name)
                           for name, c in most_common(counter)[:3])

    # words
    out_of_cluster_docs = cocluster.row_labels_ != cluster
    out_of_cluster_docs = np.where(out_of_cluster_docs)[0]
    word_col = X[:, cluster_words]
    word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) -
                           word_col[out_of_cluster_docs, :].sum(axis=0))
    word_scores = word_scores.ravel()
    important_words = list(feature_names[cluster_words[i]]
                           for i in word_scores.argsort()[:-11:-1])

    print("bicluster {} : {} documents, {} words".format(
        idx, n_rows, n_cols))
    print("categories   : {}".format(cat_string))
    print("words        : {}\n".format(', '.join(important_words)))
Vectorizing...
Coclustering...
Done in 5.39s. V-measure: 0.4445
MiniBatchKMeans...
Done in 10.99s. V-measure: 0.3309

Best biclusters:
----------------
bicluster 0 : 1995 documents, 4423 words
categories   : 23% talk.politics.guns, 19% talk.politics.misc, 15% sci.med
words        : gun, guns, geb, banks, firearms, gordon, clinton, cdt, surrender, veal

bicluster 1 : 1183 documents, 3380 words
categories   : 28% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism
words        : god, jesus, christians, atheists, kent, morality, sin, belief, objective, resurrection

bicluster 2 : 2239 documents, 2829 words
categories   : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics
words        : voltage, shipping, circuit, receiver, compression, stereo, hardware, package, processing, umass

bicluster 3 : 1769 documents, 2661 words
categories   : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale
words        : bike, car, dod, ride, motorcycle, engine, bikes, bmw, honda, helmet

bicluster 4 : 12 documents, 152 words
categories   : 100% rec.sport.hockey
words        : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved

Still need help?
Contact Us

For guaranteed 24 hour response turnarounds, upgrade to a Developer Support Plan.