Show Sidebar Hide Sidebar

# The Iris Dataset in Scikit-learn

This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray

The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features. See here for more information on this dataset.

#### New to Plotly?¶

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

### Version¶

In [1]:
import sklearn
sklearn.__version__

Out[1]:
'0.18'

### Imports¶

In [2]:
import plotly.plotly as py
import plotly.graph_objs as go

from sklearn import datasets
from sklearn.decomposition import PCA
import numpy as np


### Calculations¶

In [3]:
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
Y = iris.target

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5


### Plot the Training Points¶

In [4]:
trace = go.Scatter(x=X[:, 0],
y=X[:, 1],
mode='markers',
marker=dict(color=np.random.randn(150),
size=10,
colorscale='Viridis',
showscale=False))

layout = go.Layout(title='Training Points',
xaxis=dict(title='Sepal length',
showgrid=False),
yaxis=dict(title='Sepal width',
showgrid=False),
)

fig = go.Figure(data=[trace], layout=layout)

In [5]:
py.iplot(fig)

Out[5]:

### Plot the first three PCA dimensions¶

In [6]:
X_reduced = PCA(n_components=3).fit_transform(iris.data)

In [7]:
trace = go.Scatter3d(x=X_reduced[:, 0],
y=X_reduced[:, 1],
z=X_reduced[:, 2],
mode='markers',
marker=dict(
size=6,
color=np.random.randn(150),
colorscale='Viridis',
opacity=0.8)
)
layout=go.Layout(title='First three PCA directions',
scene=dict(
xaxis=dict(title='1st eigenvector'),
yaxis=dict(title='2nd eigenvector'),
zaxis=dict(title='3rd eigenvector'))
)
fig = go.Figure(data=[trace], layout=layout)

In [8]:
py.iplot(fig)

Out[8]:

### License¶

Code source:

        Gaël Varoquaux



License:

        BSD 3 clause
Still need help?
##### Contact Us

For guaranteed 24 hour response turnarounds, upgrade to a Developer Support Plan.