Show Sidebar Hide Sidebar

# Lasso and Elastic Net for Sparse Signals in Scikit-learn

Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth.

#### New to Plotly?¶

You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

### Version¶

In [1]:
import sklearn
sklearn.__version__

Out[1]:
'0.18.1'

### Imports¶

This tutorial imports r2_score, Lasso and ElasticNet.

In [2]:
print(__doc__)

import plotly.plotly as py
import plotly.graph_objs as go

import numpy as np
from sklearn.metrics import r2_score
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet

Automatically created module for IPython interactive environment


### Calculations¶

Generate some sparse data to play with

In [3]:
np.random.seed(42)

n_samples, n_features = 50, 200
X = np.random.randn(n_samples, n_features)
coef = 3 * np.random.randn(n_features)
inds = np.arange(n_features)
np.random.shuffle(inds)
coef[inds[10:]] = 0  # sparsify coef
y = np.dot(X, coef)

y += 0.01 * np.random.normal((n_samples,))

# Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples / 2], y[:n_samples / 2]
X_test, y_test = X[n_samples / 2:], y[n_samples / 2:]


### Lasso¶

In [4]:
alpha = 0.1
lasso = Lasso(alpha=alpha)

y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso)

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)
r^2 on test data : 0.384710


### ElasticNet¶

In [5]:
enet = ElasticNet(alpha=alpha, l1_ratio=0.7)

y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet)

ElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.7,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
r^2 on test data : 0.240176


### Plot Results¶

In [6]:
p1 = go.Scatter(y=enet.coef_,
mode='lines',
line=dict(color='lightgreen', width=2),
name='Elastic net coefficients')

p2 = go.Scatter(y=lasso.coef_,
mode='lines',
line=dict(color='gold', width=2),
name='Lasso coefficients')

p3 = go.Scatter(y=coef,
mode='lines',
line=dict(color='navy', dash='dash', width=2),
name='original coefficients')
layout = go.Layout(title = "Lasso R^2: %f, Elastic Net R^2: %f"
% (r2_score_lasso, r2_score_enet),
hovermode='closest')

fig = go.Figure(data=[p1, p2, p3], layout=layout)

In [7]:
py.iplot(fig)

Out[7]:
Still need help?