Show Sidebar Hide Sidebar

# Species Distribution Modeling in Scikit-learn

Modeling species’ geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the OneClassSVM provided by the package sklearn.svm as our modeling tool. The dataset is provided by Phillips et. al. (2006). The two species are:

### References¶

#### New to Plotly?¶

You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

### Version¶

In [1]:
import sklearn
sklearn.__version__

Out[1]:
'0.18'

### Imports¶

This tutorial imports fetch_species_distributions.

In [2]:
import plotly.graph_objs as go
import plotly.plotly as py

from __future__ import print_function

from time import time
import numpy as np

from sklearn.datasets.base import Bunch
from sklearn.datasets import fetch_species_distributions
from sklearn.datasets.species_distributions import construct_grids
from sklearn import svm, metrics

print(__doc__)

Automatically created module for IPython interactive environment


### Calculaions¶

In [3]:
def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
"""Create a bunch with information about a particular organism

This will use the test/train record arrays to extract the
data specific to the given species name.
"""
bunch = Bunch(name=' '.join(species_name.split("_")[:2]))
species_name = species_name.encode('ascii')
points = dict(test=test, train=train)

for label, pts in points.items():
# choose points associated with the desired species
pts = pts[pts['species'] == species_name]
bunch['pts_%s' % label] = pts

# determine coverage values for each of the training & testing points
ix = np.searchsorted(xgrid, pts['dd long'])
iy = np.searchsorted(ygrid, pts['dd lat'])
bunch['cov_%s' % label] = coverages[:, -iy, ix].T

return bunch


### Plotting¶

In [5]:
final_plot_data=[]
final_plot_layout=[]
name = []
name.append("Microryzomys minutus")

"""
Plot the species distribution.
"""

if len(species) > 2:
print("Note: when more than two species are provided,"
" only the first two will be used")

t0 = time()

data = fetch_species_distributions()

# Set up the data grid
xgrid, ygrid = construct_grids(data)

# The grid in x,y coordinates
X, Y = np.meshgrid(xgrid, ygrid[::-1])

# create a bunch for each species
BV_bunch = create_species_bunch(species[0],
data.train, data.test,
data.coverages, xgrid, ygrid)
MM_bunch = create_species_bunch(species[1],
data.train, data.test,
data.coverages, xgrid, ygrid)

# background points (grid coordinates) for evaluation
np.random.seed(13)
background_points = np.c_[np.random.randint(low=0, high=data.Ny,
size=10000),
np.random.randint(low=0, high=data.Nx,
size=10000)].T

# We'll make use of the fact that coverages[6] has measurements at all
# land points.  This will help us decide between land and water.
land_reference = data.coverages[6]

# Fit, predict, and plot for each species.
for i, species in enumerate([BV_bunch, MM_bunch]):
print("_" * 80)
print("Modeling distribution of species '%s'" % species.name)

# Standardize features
mean = species.cov_train.mean(axis=0)
std = species.cov_train.std(axis=0)
train_cover_std = (species.cov_train - mean) / std

# Fit OneClassSVM
print(" - fit OneClassSVM ... ", end='')
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
clf.fit(train_cover_std)
print("done.")

print(" - predict species distribution")

# Predict species distribution using the training data
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

# We'll predict only for the land points.
idx = np.where(land_reference > -9999)
coverages_land = data.coverages[:, idx[0], idx[1]].T

pred = clf.decision_function((coverages_land - mean) / std)[:, 0]
Z *= pred.min()
Z[idx[0], idx[1]] = pred

levels = np.linspace(Z.min(), Z.max(), 25)
Z[land_reference == -9999] = -9999

data1 = [
dict(
lat = species.pts_train['dd lat'] ,
lon = species.pts_train['dd long'],
marker = dict(
color ='red',
size=5),
name="Train",
type = 'scattergeo') ,
dict(
lat = species.pts_test['dd lat'] ,
lon = species.pts_test['dd long'],
marker = dict(
color = 'green',
size=5 ),
type = 'scattergeo',
name="Test")
]

final_plot_data.append(data1)

layout = dict(
title=name[i],
height=700,
geo = dict(
scope = 'south america',
showland = True,
landcolor = "rgb(255, 240, 225)",
showlakes = True,
lakecolor = "rgb(255, 255, 255)",
showcountries = True,
projection = dict(
type = 'conic conformal',
rotation = dict(
lon = -100)),
lonaxis = dict(
showgrid = False),
lataxis = dict (
showgrid = False),
))

final_plot_layout.append(layout)

# Compute AUC with regards to background points
pred_background = Z[background_points[0], background_points[1]]
pred_test = clf.decision_function((species.cov_test - mean)
/ std)[:, 0]
scores = np.r_[pred_test, pred_background]
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
roc_auc = metrics.auc(fpr, tpr)

print("\n Area under the ROC curve : %f" % roc_auc)

print("\ntime elapsed: %.2fs" % (time() - t0))

________________________________________________________________________________
Modeling distribution of species 'bradypus variegatus'
- fit OneClassSVM ... done.
- predict species distribution

Area under the ROC curve : 0.868443
________________________________________________________________________________
Modeling distribution of species 'microryzomys minutus'
- fit OneClassSVM ... done.
- predict species distribution

Area under the ROC curve : 0.993919

time elapsed: 3.80s

In [6]:
fig = {'data':final_plot_data[0], 'layout':final_plot_layout[0]}
py.iplot(fig)

Out[6]:
In [7]:
fig = { 'data':final_plot_data[1], 'layout':final_plot_layout[1] }
py.iplot(fig)

Out[7]:

Authors:

      Peter Prettenhofer <peter.prettenhofer@gmail.com>
Jake Vanderplas <vanderplas@astro.washington.edu>



      BSD 3 clause