Show Sidebar Hide Sidebar

Mapbox Choropleth Maps in Python

How to make a Mapbox Choropleth Map of US Counties in Python with Plotly.

Mapbox Access Token

To plot on Mapbox maps with Plotly you may need a Mapbox account and a public Mapbox Access Token. See our Mapbox Map Layers documentation for more information.

Introduction: main parameters for choropleth mapbox charts

Making choropleth maps requires two main types of input: GeoJSON-formatted geometry information where each feature has an id and a list of values indexed by feature id. The GeoJSON data is passed to the geojson attribute, and the data is passed into the z (color for px.choropleth_mapbox) attribute, in the same order as the IDs are passed into the location attribute.

GeoJSON with feature.id

Here we load a GeoJSON file containing the geometry information for US counties, where feature.id is a FIPS code.

In [1]:
from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
    counties = json.load(response)

counties["features"][0]
Out[1]:
{'type': 'Feature',
 'properties': {'GEO_ID': '0500000US01001',
  'STATE': '01',
  'COUNTY': '001',
  'NAME': 'Autauga',
  'LSAD': 'County',
  'CENSUSAREA': 594.436},
 'geometry': {'type': 'Polygon',
  'coordinates': [[[-86.496774, 32.344437],
    [-86.717897, 32.402814],
    [-86.814912, 32.340803],
    [-86.890581, 32.502974],
    [-86.917595, 32.664169],
    [-86.71339, 32.661732],
    [-86.714219, 32.705694],
    [-86.413116, 32.707386],
    [-86.411172, 32.409937],
    [-86.496774, 32.344437]]]},
 'id': '01001'}

Data indexed by id

Here we load unemployment data by county, also indexed by FIPS code.

In [2]:
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv",
                   dtype={"fips": str})
df.head()
Out[2]:
fips unemp
0 01001 5.3
1 01003 5.4
2 01005 8.6
3 01007 6.6
4 01009 5.5

Choropleth map using plotly.express and carto base map (no token needed)

Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on "tidy" data.

With px.choropleth_mapbox, each row of the DataFrame is represented as a region of the choropleth.

In [3]:
from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
    counties = json.load(response)

import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv",
                   dtype={"fips": str})

import plotly.express as px

fig = px.choropleth_mapbox(df, geojson=counties, locations='fips', color='unemp',
                           color_continuous_scale="Viridis", 
                           range_color=(0, 12),
                           mapbox_style="carto-positron",
                           zoom=3, center = {"lat": 37.0902, "lon": -95.7129},
                           opacity=0.5,
                           labels={'unemp':'unemployment rate'}
                          )
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()