Show Sidebar Hide Sidebar # Random Walk in Python

Learn how to use Python to make a Random Walk

A random walk can be thought of as a random process in which a token or a marker is randomly moved around some space, that is, a space with a metric used to compute distance. It is more commonly conceptualized in one dimension ($\mathbb{Z}$), two dimensions ($\mathbb{Z}^2$) or three dimensions ($\mathbb{Z}^3$) in Cartesian space, where $\mathbb{Z}$ represents the set of integers. In the visualizations below, we will be using scatter plots as well as a colorscale to denote the time sequence of the walk.

#### Random Walk in 1D¶

The jitter in the data points along the x and y axes are meant to illuminate where the points are being drawn and what the tendancy of the random walk is.

In :
import plotly.graph_objects as go
import numpy as np
np.random.seed(1)

l = 100
steps = np.random.choice([-1, 1], size=l) + 0.05 * np.random.randn(l) # l steps
position = np.cumsum(steps) # integrate the position by summing steps values
y = 0.05 * np.random.randn(l)

fig = go.Figure(data=go.Scatter(
x=position,
y=y,
mode='markers',
name='Random Walk in 1D',
marker=dict(
color=np.arange(l),
size=7,
colorscale='Reds',
showscale=True,
)
))

fig.update_layout(yaxis_range=[-1, 1])
fig.show()


#### Random Walk in 2D¶

In :
import plotly.graph_objects as go
import numpy as np

l = 1000
x_steps = np.random.choice([-1, 1], size=l) + 0.2 * np.random.randn(l) # l steps
y_steps = np.random.choice([-1, 1], size=l) + 0.2 * np.random.randn(l) # l steps
x_position = np.cumsum(x_steps) # integrate the position by summing steps values
y_position = np.cumsum(y_steps) # integrate the position by summing steps values

fig = go.Figure(data=go.Scatter(
x=x_position,
y=y_position,
mode='markers',
name='Random Walk',
marker=dict(
color=np.arange(l),
size=8,
colorscale='Greens',
showscale=True
)
))

fig.show()


#### Random walk and diffusion¶

In the two following charts we show the link between random walks and diffusion. We compute a large number N of random walks representing for examples molecules in a small drop of chemical. While all trajectories start at 0, after some time the spatial distribution of points is a Gaussian distribution. Also, the average distance to the origin grows as $\sqrt(t)$.

In :
import plotly.graph_objects as go
import numpy as np

l = 1000
N = 10000
steps = np.random.choice([-1, 1], size=(N, l)) + 0.05 * np.random.standard_normal((N, l)) # l steps
position = np.cumsum(steps, axis=1) # integrate all positions by summing steps values along time axis

fig = go.Figure(data=go.Histogram(x=position[:, -1])) # positions at final time step
fig.show()

In :
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np

l = 1000
N = 10000
t = np.arange(l)
steps = np.random.choice([-1, 1], size=(N, l)) + 0.05 * np.random.standard_normal((N, l)) # l steps
position = np.cumsum(steps, axis=1) # integrate the position by summing steps values
average_distance = np.std(position, axis=0) # average distance

fig = make_subplots(1, 2)
fig.add_trace(go.Scatter(x=t, y=average_distance, name='mean distance'), 1, 1)
fig.add_trace(go.Scatter(x=t, y=average_distance**2, name='mean squared distance'), 1, 2)
fig.update_xaxes(title_text='$t$')
fig.update_yaxes(title_text='$l$', col=1)
fig.update_yaxes(title_text='$l^2$', col=2)
fig.update_layout(showlegend=False)
fig.show()


We can formally think of a 1D random walk as a point jumping along the integer number line. Let $Z_i$ be a random variable that takes on the values +1 and -1. Let this random variable represent the steps we take in the random walk in 1D (where +1 means right and -1 means left). Also, as with the above visualizations, let us assume that the probability of moving left and right is just $\frac{1}{2}$. Then, consider the sum

\begin{align*} S_n = \sum_{i=0}^{n}{Z_i} \end{align*}

where S_n represents the point that the random walk ends up on after n steps have been taken.

To find the expected value of $S_n$, we can compute it directly. Since each $Z_i$ is independent, we have

\begin{align*} \mathbb{E}(S_n) = \sum_{i=0}^{n}{\mathbb{E}(Z_i)} \end{align*}

but since $Z_i$ takes on the values +1 and -1 then

\begin{align*} \mathbb{E}(Z_i) = 1 \cdot P(Z_i=1) + -1 \cdot P(Z_i=-1) = \frac{1}{2} - \frac{1}{2} = 0 \end{align*}

Therefore, we expect our random walk to hover around $0$ regardless of how many steps we take in our walk. 