Violin Plots in R
How to create violin plots in R with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Basic Violin Plot
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")
fig <- df %>%
plot_ly(
y = ~total_bill,
type = 'violin',
box = list(
visible = T
),
meanline = list(
visible = T
),
x0 = 'Total Bill'
)
fig <- fig %>%
layout(
yaxis = list(
title = "",
zeroline = F
)
)
fig
Multiple Trace
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")
fig <- df %>%
plot_ly(
x = ~day,
y = ~total_bill,
split = ~day,
type = 'violin',
box = list(
visible = T
),
meanline = list(
visible = T
)
)
fig <- fig %>%
layout(
xaxis = list(
title = "Day"
),
yaxis = list(
title = "Total Bill",
zeroline = F
)
)
fig
Grouped Violin Plot
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")
fig <- df %>%
plot_ly(type = 'violin')
fig <- fig %>%
add_trace(
x = ~day[df$sex == 'Male'],
y = ~total_bill[df$sex == 'Male'],
legendgroup = 'M',
scalegroup = 'M',
name = 'M',
box = list(
visible = T
),
meanline = list(
visible = T
),
color = I("blue")
)
fig <- fig %>%
add_trace(
x = ~day[df$sex == 'Female'],
y = ~total_bill[df$sex == 'Female'],
legendgroup = 'F',
scalegroup = 'F',
name = 'F',
box = list(
visible = T
),
meanline = list(
visible = T
),
color = I("pink")
)
fig <- fig %>%
layout(
yaxis = list(
zeroline = F
),
violinmode = 'group'
)
fig
Split Violin Plot
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")
fig <- df %>%
plot_ly(type = 'violin')
fig <- fig %>%
add_trace(
x = ~day[df$smoker == 'Yes'],
y = ~total_bill[df$smoker == 'Yes'],
legendgroup = 'Yes',
scalegroup = 'Yes',
name = 'Yes',
side = 'negative',
box = list(
visible = T
),
meanline = list(
visible = T
),
color = I("blue")
)
fig <- fig %>%
add_trace(
x = ~day[df$smoker == 'No'],
y = ~total_bill[df$smoker == 'No'],
legendgroup = 'No',
scalegroup = 'No',
name = 'No',
side = 'positive',
box = list(
visible = T
),
meanline = list(
visible = T
),
color = I("green")
)
fig <- fig %>%
layout(
xaxis = list(
title = ""
),
yaxis = list(
title = "",
zeroline = F
),
violingap = 0,
violingroupgap = 0,
violinmode = 'overlay'
)
fig
Advanced Violin Plot
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv")
pointposMale <- c(-0.9,-1.1,-0.6,-0.3)
pointposFemale <- c(0.45,0.55,1,0.4)
showLegend <- c(T,F,F,F)
fig <- plot_ly(type = 'violin')
i = 0
for (i in 1:length(unique(df$day))) {
fig <- add_trace(
fig,
x = df$day[df$sex == 'Male' & df$day == unique(df$day)[i]],
y = df$total_bill[df$sex == 'Male' & df$day == unique(df$day)[i]],
hoveron = "points+kde",
legendgroup = 'M',
scalegroup = 'M',
name = 'M',
side = 'negative',
box = list(
visible = T
),
points = 'all',
pointpos = pointposMale[i],
jitter = 0,
scalemode = 'count',
meanline = list(
visible = T
),
color = I("#8dd3c7"),
marker = list(
line = list(
width = 2,
color = "#8dd3c7"
),
symbol = 'line-ns'
),
showlegend = showLegend[i]
)
fig <- fig %>%
add_trace(
x = df$day[df$sex == 'Female' & df$day == unique(df$day)[i]],
y = df$total_bill[df$sex == 'Female' & df$day == unique(df$day)[i]],
hoveron = "points+kde",
legendgroup = 'F',
scalegroup = 'F',
name = 'F',
side = 'positive',
box = list(
visible = T
),
points = 'all',
pointpos = pointposFemale[i],
jitter = 0,
scalemode = 'count',
meanline = list(
visible = T
),
color = I("#bebada"),
marker = list(
line = list(
width = 2,
color = "#bebada"
),
symbol = 'line-ns'
),
showlegend = showLegend[i]
)
}
fig <- layout(
fig,
title = "Total bill distribution<br><i>scaled by number of bills per gender",
yaxis = list(
zeroline = F
),
violingap = 0,
violingroupgap = 0,
violinmode = 'overlay',
legend = list(
tracegroupgap = 0
)
)
fig
Reference
See https://plotly.com/r/reference/ for more information and options!
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)