
Aggregations in R
How to use aggregates in R with Plotly.
New to Plotly?
Plotly's R library is free and open source!
Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode.
We also have a quick-reference cheatsheet (new!) to help you get started!
Version Check
Version 4 of Plotly's R package is now available!
Check out this post for more information on breaking changes and new features available in this version.
library(plotly)
packageVersion('plotly')
## [1] '4.7.1.9000'
Introduction
Aggregates are a type of transform that can be applied to values in a given expression. Available aggregations are:
Function | Description |
---|---|
count |
Returns the quantity of items for each group. |
sum |
Returns the summation of all numeric values. |
avg |
Returns the average of all numeric values. |
median |
Returns the median of all numeric values. |
mode |
Returns the mode of all numeric values. |
rms |
Returns the rms of all numeric values. |
stddev |
Returns the standard deviation of all numeric values. |
min |
Returns the minimum numeric value for each group. |
max |
Returns the maximum numeric value for each group. |
first |
Returns the first numeric value for each group. |
last |
Returns the last numeric value for each group. |
Basic Example
library(plotly)
p <- plot_ly(
type = 'scatter',
x = diamonds$cut,
y = diamonds$price,
mode = 'markers',
transforms = list(
list(
type = 'aggregate',
groups = diamonds$cut,
aggregations = list(
list(
target = 'y', func = 'sum', enabled = T
)
)
)
)
)
# Create a shareable link to your chart
# Set up API credentials: https://plot.ly/r/getting-started
chart_link <- api_create(p, filename = "aggregations-basic")
chart_link
Aggregate Functions
library(plotly)
s <- schema()
agg <- s$transforms$aggregate$attributes$aggregations$items$aggregation$func$values
l = list()
for (i in 1:length(agg)) {
ll = list(method = "restyle",
args = list('transforms[0].aggregations[0].func', agg[i]),
label = agg[i])
l[[i]] = ll
}
p <- plot_ly(
type = 'scatter',
x = diamonds$cut,
y = diamonds$price,
mode = 'markers',
marker = list(
size = 10,
color = 'blue',
opacity = 0.8
),
transforms = list(
list(
type = 'aggregate',
groups = diamonds$cut,
aggregations = list(
list(
target = 'y', func = 'avg', enabled = T
)
)
)
)
) %>%
layout(
title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
xaxis = list(title = 'Cut'),
yaxis = list(title = 'Price ($)'),
updatemenus = list(
list(
x = 0.25,
y = 1.04,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
buttons = l
)
)
)
# Create a shareable link to your chart
# Set up API credentials: https://plot.ly/r/getting-started
chart_link <- api_create(p, filename = "aggregations-functions")
chart_link
Histogram Binning
library(plotly)
df <- read.csv("https://plot.ly/~public.health/17.csv")
labels <- function(size, label) {
list(
args = c("xbins.size", size),
label = label,
method = "restyle"
)
}
p <- df %>%
plot_ly(
x = ~date,
autobinx = FALSE,
autobiny = TRUE,
marker = list(color = "rgb(68, 68, 68)"),
name = "date",
type = "histogram",
xbins = list(
end = "2016-12-31 12:00",
size = "M1",
start = "1983-12-31 12:00"
)
) %>%
layout(
paper_bgcolor = "rgb(240, 240, 240)",
plot_bgcolor = "rgb(240, 240, 240)",
title = "<b>Shooting Incidents</b><br>use dropdown to change bin size",
xaxis = list(
type = 'date'
),
yaxis = list(
title = "Incidents"
),
updatemenus = list(
list(
x = 0.1,
y = 1.15,
active = 1,
showactive = TRUE,
buttons = list(
labels("D1", "Day"),
labels("M1", "Month"),
labels("M6", "Half Year"),
labels("M12", "Year")
)
)
)
)
# Create a shareable link to your chart
# Set up API credentials: https://plot.ly/r/getting-started
chart_link <- api_create(p, filename = "aggregations-binning")
chart_link
Mapping with Aggregations
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/bcdunbar/datasets/master/worldhappiness.csv")
s <- schema()
agg <- s$transforms$aggregate$attributes$aggregations$items$aggregation$func$values
l = list()
for (i in 1:length(agg)) {
ll = list(method = "restyle",
args = list('transforms[0].aggregations[0].func', agg[i]),
label = agg[i])
l[[i]] = ll
}
p <- df %>%
plot_ly(
type = 'choropleth',
locationmode = 'country names',
locations = ~Country,
z = ~HappinessScore,
autocolorscale = F,
reversescale = T,
colorscale = 'Portland',
transforms = list(list(
type = 'aggregate',
groups = ~Country,
aggregations = list(
list(target = 'z', func = 'sum', enabled = T)
)
))
) %>%
layout(
title = "<b>World Happiness</b>",
geo = list(
showframe = F,
showcoastlines = F
),
updatemenus = list(
list(
x = 0.25,
y = 1.04,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
buttons = l
)
)
)
# Create a shareable link to your chart
# Set up API credentials: https://plot.ly/r/getting-started
chart_link <- api_create(p, filename = "aggregations-map")
chart_link
Reference
See https://plot.ly/r/reference/ for more information and options!